Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-21T07:32:12.091Z Has data issue: false hasContentIssue false

The AusBeef model for beef production: I. Description and evaluation

Published online by Cambridge University Press:  03 August 2017

H. C. DOUGHERTY
Affiliation:
Department of Animal Science, University of California, Davis, CA 95616, USA
E. KEBREAB
Affiliation:
Department of Animal Science, University of California, Davis, CA 95616, USA
M. EVERED
Affiliation:
NSW DPI, Beef Industry Centre of Excellence, Trevenna Road N.S.W 2351, Armidale, Australia,
B. A. LITTLE
Affiliation:
CSIRO Agriculture, St. Lucia, QLD 4067, Australia
A. B. INGHAM
Affiliation:
CSIRO Agriculture, St. Lucia, QLD 4067, Australia
R. S. HEGARTY
Affiliation:
School of Env. Rural Science, University of New England, Armidale, NSW 2351, Australia
D. PACHECO
Affiliation:
AgResearch Grasslands, Palmerston North 4442, New Zealand
M. J. MCPHEE*
Affiliation:
NSW DPI, Beef Industry Centre of Excellence, Trevenna Road N.S.W 2351, Armidale, Australia,
*
*To whom all correspondence should be addressed. Email: malcolm.mcphee@dpi.nsw.gov.au

Summary

As demand for animal products, such as meat and milk, increases, and concern over environmental impact grows, mechanistic models can be useful tools to better represent and understand ruminant systems and evaluate mitigation options to reduce greenhouse gas emissions without compromising productivity. The objectives of the present study were to describe the representation of processes for growth and enteric methane (CH4) production in AusBeef, a whole-animal, dynamic, mechanistic model for beef production; evaluate AusBeef for its ability to predict daily methane production (DMP, g/day), gross energy intake (GEI, MJ/day) and methane yield (MJ CH4/MJ GEI) using an independent data set; and to compare AusBeef estimates to those from the empirical equations featured in the current National Academies of Sciences, Engineering and Medicine (NASEM, 2016) beef cattle requirements for growth and the Ruminant Nutrition System (RNS), a dynamic, mechanistic model of Tedeschi & Fox, 2016. AusBeef incorporates a unique fermentation stoichiometry that represents four microbial groups: protozoa, amylolytic bacteria, cellulolytic bacteria and lactate-utilizing bacteria. AusBeef also accounts for the effects of ruminal pH on microbial degradation of feed particles. Methane emissions are calculated from net ruminal hydrogen balance, which is defined as the difference between inputs from fermentation and outputs due to microbial use and biohydrogenation. AusBeef performed similarly to the NASEM empirical model in terms of prediction accuracy and error decomposition, and with less root mean square predicted error (RMSPE) than the RNS mechanistic model when expressed as a percentage of the observed mean (RMSPE, %), and the majority of error was non-systematic. For DMP, RMSPE for AusBeef, NASEM and RNS were 24·0, 19·8 and 50·0 g/day for the full data set (n = 35); 25·6, 18·2 and 56·2 g/day for forage diets (n = 19); and 21·8, 21·5 and 41·5 g/day for mixed diets (n = 16), respectively. Concordance correlation coefficients (CCC) were highest for GEI, with all models having CCC > 0·66, and higher CCC for forage diets than mixed, while CCC were lowest for MY, particularly forage diets. Systematic error increased for all models on forage diets, largely due to an increase in error due to mean bias, and while all models performed well for mixed diets, further refinements are required to improve the prediction of CH4 on forage diets.

Type
Modelling Animal Systems Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appuhamy, J. A. D. R. N., France, J. & Kebreab, E. (2016). Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Global Change Biology 22, 30393056.CrossRefGoogle ScholarPubMed
Baldwin, R. L. (1995). Modeling Ruminant Digestion and Metabolism. New York, NY: Chapman & Hall.Google Scholar
Baldwin, R. L., France, J. & Gill, M. (1987 a). Metabolism of the lactating cow. I. Animal elements of a mechanistic model. Journal of Dairy Research 54, 77105.CrossRefGoogle ScholarPubMed
Baldwin, R. L., Thornley, J. H. M. & Beever, D. E. (1987 b). Metabolism of the lactating cow. II. Digestive elements of a mechanistic model. Journal of Dairy Research 54, 107131.CrossRefGoogle ScholarPubMed
Baldwin, R. L., France, J., Beever, D. E., Gill, M. & Thornley, J. H. M. (1987 c). Metabolism of the lactating cow. III. Properties of mechanistic models suitable for evaluation of energetic relationships and factors involved in the partition of nutrients. Journal of Dairy Research 54, 133145.Google Scholar
Beauchemin, K. A., Kreuzer, M., O'Mara, F. & McAllister, T. A. (2008). Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture 48, 2127.Google Scholar
Bibby, J. H. & Toutenberg, H. (1977). Prediction and Improved Estimation in Linear Models. Minneapolis: John Wiley & Sons.Google Scholar
Boland, T. M., Quinlan, C., Pierce, K. M., Lynch, M. B., Kenny, D. A., Kelly, A. K. & Purcell, P. J. (2014). The effect of pasture pregrazing herbage mass on methane emissions, ruminal fermentation, and average daily gain of grazing beef heifers. Journal of Animal Science 91, 38673874.Google Scholar
Bruinsma, J. (2003). World Agriculture: Towards 2015/2030 an FAO Perspective. Rome, Italy: FAO. Available from: http://www.fao.org/docrep/005/y4252e/y4252e00.htm (accessed 17 August 2016).Google Scholar
Chaves, A. V., Thompson, L. C., Iwaasa, A. D., Scott, S. L., Olson, M. E., Benchaar, C., Veira, D. M. & McAllister, T. A. (2006). Effect of pasture type (alfalfa vs grass) on methane and carbon dioxide production by yearling beef heifers. Canadian Journal of Animal Science 86, 409418.Google Scholar
Dijkstra, J. (1993). Mathematical modelling and integration of rumen fermentation processes. PhD Thesis, Wageningen Agricultural University, Wageningen, The Netherlands.Google Scholar
Dijkstra, J. (1994). Simulation of the dynamics of protozoa in the rumen. British Journal of Nutrition 72, 679699.CrossRefGoogle ScholarPubMed
Dijkstra, J., Neal, H. D., Beever, D. E. & France, J. (1992). Simulation of nutrient digestion, absorption and outflow in the rumen: model description. Journal of Nutrition 122, 22392256.Google Scholar
Dijkstra, J., Gerrits, W. J. J., Bannink, A. & France, J. (2000). Modelling lipid metabolism in the rumen. In Modelling Nutrient Utilization in Farm Animals (Eds McNamara, J. P., France, J. & Beever, D. E.), pp. 2536. New York: CAB International.CrossRefGoogle Scholar
Dijkstra, J., France, J., Ellis, J. L., Strathe, A. B., Kebreab, E. & Bannink, A. (2013). Production efficiency of ruminants: feed, nitrogen, and methane. In Sustainable Animal Agriculture (Ed. Kebreab, E.), pp. 1025. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Duthie, C.-A., Rooke, J. A., Hyslop, J. J. & Waterhouse, A. (2015). Methane emissions from two breeds of beef cows offered diets containing barley straw with either grass silage or brewers’ grains. Animal 9, 16801687.CrossRefGoogle ScholarPubMed
Ehle, F. R., Murphy, M. R. & Clark, J. H. (1982). In situ particle size reduction and the effect of particle size on degradation of crude protein and dry matter in the rumen of dairy steers. Journal of Dairy Science 65, 963971.Google Scholar
Ellis, J. L., Kebreab, E., Odongo, N. E., McBride, B. W., Okine, E. K. & France, J. (2007). Prediction of methane production from dairy and beef cattle. Journal of Dairy Science 90, 34563466.Google Scholar
Ellis, J. L., Dijkstra, J., Kebreab, E., Bannink, A., Odongo, N. E., McBride, B. W. & France, J. (2008). Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. The Journal of Agricultural Science, Cambridge 146, 213233.Google Scholar
Ellis, J. L., Kebreab, E., Odongo, N. E., Beauchemin, K. A., McGinn, S., Nkrumah, J. D., Moore, S. S., Christopherson, R., Murdoch, G. K., McBride, B. W., Okine, E. K. & France, J. (2009). Modeling methane production from beef cattle using linear and nonlinear approaches. Journal of Animal Science 87, 13341345.Google Scholar
Escobar-Bahamondes, P., Oba, M. & Beauchemin, K. A. (2017). Universally applicable methane prediction equations for beef cattle fed high- or low-forage diets. Canadian Journal of Animal Science 97, 8394.Google Scholar
Eshel, G., Shepon, A., Makov, T. & Milo, R. (2014). Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proceedings of the National Academy of Sciences USA 111, 1199612001.Google Scholar
FAO (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Rome, Italy: FAO. Available from: http://www.fao.org/3/i3437e.pdf (accessed 17 August 2016).Google Scholar
FAO (2014). The State of Food and Agriculture: Innovation in Family Farming. Rome, Italy: FAO. Available from: http://www.fao.org/3/a-i4040e.pdf (accessed 17 August 2016).Google Scholar
FAO (2015). Towards a Water and Food Secure Future. Critical Perspectives for Policy-makers. Rome, Italy: FAO. Available from: http://www.fao.org/3/a-i4560e.pdf (accessed 31 May 2017).Google Scholar
Fox, D. G., Sniffen, C. J., O'Connor, J. D., Russell, J. B. & Van Soest, P. J. (1992). A net carbohydrate and protein system for evaluating cattle diets: III. Cattle requirements and diet adequacy. Journal of Animal Science 70, 35783596.CrossRefGoogle ScholarPubMed
Fox, D. G., Tylutki, T. P., Van Amburgh, M. E., Chase, L. E., Pell, A. N., Overton, T. R., Tedeschi, L. O., Rasmussen, C. N. & Durbal, V. M. (2000). The Net Carbohydrate and Protein System for Evaluating Herd Nutrition and Nutrient Excretion. CNCPS Version 4.0: Model Documentation. Ithaca, NY: Department of Animal Science, Cornell University.Google Scholar
Fox, D. G., Tedeschi, L. O., Tylutki, T. P., Russell, J. B., Van Amburgh, M. E., Chase, L. E., Pell, A. N. & Overton, T. R. (2004). The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Animal Feed Science & Technology 112, 2978.Google Scholar
Freer, M., Moore, A. D. & Donnelly, J. R. (1997). GRAZPLAN: decision support systems for Australian grazing enterprises – II. The animal biology model for feed intake, production and reproduction and the GrazFeed DSS. Agricultural Systems 54, 77126.Google Scholar
Gregorini, P., Beukes, P., Waghorn, G., Pacheco, D. & Hanigan, M. (2015). Development of an improved representation of rumen digesta outflow in a mechanistic and dynamic model of a dairy cow, MOLLY. Ecological Modelling 313, 293306.CrossRefGoogle Scholar
Hackmann, T. J. & Firkins, J. L. (2015). Maximizing efficiency of rumen microbial protein production. Frontiers in Microbiology 6, 465. doi: 10.3389/fmicb.2015.00465.CrossRefGoogle ScholarPubMed
Haisan, J., Sun, Y., Guan, L. L., Beauchemin, K. A., Iwaasa, A., Duval, S., Barreda, D. R. & Oba, M. (2014). The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. Journal of Dairy Science 97, 31103119.Google Scholar
Hales, K. E., Foote, A. P., Brown-Brandl, T. M. & Freetly, H. C. (2015). Effects of dietary glycerin inclusion at 0, 5, 10, and 15 percent of dry matter on energy metabolism and nutrient balance in finishing beef steers. Journal of Animal Science 93, 348356.Google Scholar
Hegarty, R. S. (2016). Impacts of CFI Methodologies on Whole-farm Systems. Final Report. Canberra, Australia: Department of Agriculture, University of New England, Filling the Research Gap Program. Available from: https://www.une.edu.au/__data/assets/pdf_file/0011/166808/Abridged_draft_Report_AusBeef.pdf (accessed 30 June 2017).Google Scholar
Herrmann, N. (2013). AusFarm – A Tutorial Version 1.8. Canberra, Australia: CSIRO. Available from: http://www.grazplan.csiro.au/files/AusFarm20-20a%20tutorial.pdf (accessed 27 June 2017).Google Scholar
INRA (French National Institute for Agricultural Research), CIRAD (French Agricultural Research Center for International Development), AFZ (French Association for Animal Production) & FAO (Food and Agriculture Organization of the United Nations) (2016). Feedipedia: an On-Line Encyclopedia of Animal Feeds. Paris, France and Rome, Italy: INRA, CIRAD, AFZ & FAO. Available from: http://www.feedipedia.org (accessed 1 April 2017).Google Scholar
IPCC (Intergovernmental Panel On Climate Change) (2006). Emissions from Livestock and Manure Management. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (Eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.). pp. 3032. Hayama, Japan: Institute for Global Environmental Strategies (IGES).Google Scholar
Jonker, A., Muetzel, S., Molano, G. & Pacheco, D. (2016). Effect of fresh pasture forage quality, feeding level and supplementation on methane emissions from growing beef cattle. Animal Production Science 56, 17141721.Google Scholar
Kennedy, P. M. (1985). Effect of rumination on reduction of particle size of rumen digesta by cattle. Australian Journal of Agricultural Research 36, 819828.Google Scholar
Lin, L. I.-K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255268.CrossRefGoogle ScholarPubMed
McDonnell, R. P., Hart, K. J., Boland, T. M., Kelly, A. K., McGee, M. & Kenny, D. A. (2016). Effect of divergence in phenotypic residual feed intake on methane emissions, ruminal fermentation, and apparent whole-tract digestibility of beef heifers across three contrasting diets. Journal of Animal Science 94, 11791193.Google Scholar
McGinn, S. M., Chung, Y.-H., Beauchemin, K. A., Iwaasa, A. D. & Grainger, C. (2009). Use of corn distillers’ dried grains to reduce enteric methane loss from beef cattle. Canadian Journal of Animal Science 89, 409413.CrossRefGoogle Scholar
McIntyre, B. D., Herren, H. R., Wakhungu, J. & Watson, R. T. (2009). International Assessment of Agricultural Knowledge, Science, and Technology for Development: Global Report. Washington, DC: IAASTD.Google Scholar
McNamara, J. P., Hanigan, M. D. & White, R. R. (2016). Invited review: experimental design, data reporting, and sharing in support of animal systems modelling research. Journal of Dairy Science 99, 93559371.CrossRefGoogle Scholar
McNamara, J. P., Auldist, M. J., Marett, L. C., Moate, P. J. & Wales, W. J. (2017). Analysis of pasture supplementation strategies by means of a mechanistic model of ruminal digestion and metabolism in the dairy cow. Journal of Dairy Science 100, 10951106.CrossRefGoogle ScholarPubMed
Mills, J. A. N., Kebreab, E., Yates, C. M., Crompton, L. A., Cammell, S. B., Dhanoa, M. S., Agnew, R. E. & France, J. (2003). Alternative approaches to predicting methane emissions from dairy cows. Journal of Animal Science 81, 31413150.CrossRefGoogle ScholarPubMed
Moore, A. D., Holzworth, D. P., Herrmann, N. I., Huth, N. I., Keating, B. A. & Robertson, M. J. (2005). Specification of the CSIRO Common Modelling Protocol. Canberra, Australia: CSIRO. Available from: http://www.grazplan.csiro.au/files/Protocol%20Specification.pdf (accessed 1 June 2017).Google Scholar
Moraes, L. E., Strathe, A. B., Fadel, J. G., Casper, D. P. & Kebreab, E. (2014). Prediction of enteric methane emissions from cattle. Global Change Biology 20, 21402148.Google Scholar
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D. & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the American Society of Agricultural and Biological Engineers 50, 885900.Google Scholar
Murphy, M. R., Baldwin, R. L. & Koong, L. J. (1982). Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. Journal of Animal Science 55, 411421.Google Scholar
Nagaraja, T. G. & Titgemeyer, E. C. (2007). Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. Journal of Dairy Science 90 (Suppl. 1), E17E38.Google Scholar
Nagorcka, B. N. (2004 a). AUSBEEF: A Decision Support System for Cattle Feedlots and the PGLP (Premium Grains for Livestock Program). Canadian Beef Research Center Seminar, July 2004, Lethbridge, Canada. Lethbridge, Canada: The Center. Available from: https://publications.csiro.au/rpr/search?q=AUSBEEF3A+a+decision+support+system+for+cattle+feedlots+and+the+PGLP+28Premium+Grains+for+Livestock+Program%29 (accessed 27 June 2017).Google Scholar
Nagorcka, B. N. (2004 b). A Description of AUSBEEF Ruminant Model Highlighting the Differences with the Current Models CNCPS and MOLLY. Faculty of Animal Science, University of California Seminar, August, 2004. Davis, CA: University of California. Available from: https://publications.csiro.au/rpr/search?q=A20description20of20AUSBEEF20ruminant20model20highlighting20the20differences20with20the20current20models20CNCPS20and%20MOLLY.&p=1&rpp=25&sb=RECENT (accessed 27 June 2017).Google Scholar
Nagorcka, B. N. & Zurcher, E. J. (2002). The potential gains achievable through access to more advanced/mechanistic models of ruminants. Animal Production in Australia: Proceedings of the Australian Society of Animal Production 24, 455461.Google Scholar
Nagorcka, B. N., Gordon, G. L. R. & Dynes, R. A. (2000). Towards a more accurate representation of fermentation in mathematical models of the rumen. In Modelling Nutrient Utilization in Farm Animals (Eds McNamara, J. P., France, J. & Beever, D.), pp. 3748. New York: CAB International.Google Scholar
National Academies of Sciences, Engineering, and Medicine (NASEM) (2016). Nutrient Requirements of Beef Cattle, 8th revised edn. Washington, DC: The National Academies Press.Google Scholar
O'Connor, J. D., Sniffen, C. J., Fox, D. G. & Chalupa, W. (1993). A net carbohydrate and protein system for evaluating cattle diets: IV. Predicting amino acid adequacy. Journal of Animal Science 71, 12981311.Google Scholar
Owens, F. N., Secrist, D. S., Hill, W. J. & Gill, D. R. (1998). Acidosis in cattle: a review. Journal of Animal Science 76, 275286.CrossRefGoogle ScholarPubMed
Pitt, R. E., Van Kessel, J. S., Fox, D. G., Pell, A. N., Barry, M. C. & Van Soest, P. J. (1996). Prediction of ruminal volatile fatty acids and pH within the net carbohydrate and protein system. Journal of Animal Science 74, 226244.Google Scholar
PTV Planning Transport Verkehr AG (2004). User's Manual, VISSIM 4.0. Karlsruhe, Germany: PTV.Google Scholar
Ricci, P., Rooke, J. A., Nevison, I. & Waterhouse, A. (2013). Methane emissions from beef and dairy cattle: quantifying the effect of physiological stage and diet characteristics. Journal of Animal Science 91, 53795389.Google Scholar
Romero-Perez, A., Okine, E. K., McGinn, S. M., Guan, L. L., Oba, M., Duval, S. M., Kindermann, M. & Beauchemin, K. A. (2014). The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle. Journal of Animal Science 92, 46824693.Google Scholar
Rooke, J. A., Wallace, R. J., Duthie, C.-A., McKain, N., de Souza, S. M., Hyslop, J. J., Ross, D. W., Waterhouse, T. & Roehe, R. (2014). Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding, and genotype. British Journal of Nutrition 112, 398407.Google Scholar
Russell, J. B., O'Connor, J. D., Fox, D. G., Van Soest, P. J. & Sniffen, C. J. (1992). A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science 70, 35513561.Google Scholar
Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G. & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70, 35623577.Google Scholar
Stackhouse, K. R., Pan, Y., Zhao, Y. & Mitloehner, F. M. (2011). Greenhouse gas and alcohol emissions from feedlot steers and calves. Journal of Environmental Quality 40, 899906.Google Scholar
Tedeschi, L. O. (2006). Assessment of the adequacy of mathematical models. Agricultural Systems 89, 225247.Google Scholar
Tedeschi, L. O. & Fox, D. G. (2016). The Ruminant Nutrition System: An Applied Model for Predicting Nutrient Requirements and Feed Utilization in Ruminants. Acton, MA: XanEdu Publishing, Inc.Google Scholar
Tedeschi, L. O., Chalupa, W., Janczewski, E., Fox, D. G., Sniffen, C. J., Munson, R., Kononoff, P. J. & Boston, R. (2008). Evaluation and application of the CPM dairy nutrition model. Journal of Agricultural Science, Cambridge 146, 171182.CrossRefGoogle Scholar
Thornton, P. K. (2010). Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 28532867.Google Scholar
Tylutki, T. P., Fox, D. G., Durbal, V. M., Tedeschi, L. O., Russell, J. B., Van Amburgh, M. E., Overton, T. R., Chase, L. E. & Pell, A. N. (2008). Cornell net carbohydrate and protein system; A model for precision feeding of dairy cattle. Animal Feed Science & Technology 143, 174202.CrossRefGoogle Scholar
US EPA (United States Environmental Protection Agency) (2012). Global Anthropogenic non-CO 2 Greenhouse Gas Emissions: 1990–2030 . Washington, DC: US EPA. Available from: https://www.epa.gov/sites/production/files/2016-08/documents/epa_global_nonco2_projections_dec2012.pdf (accessed 31 May 2017).Google Scholar
Vetharaniam, I., Vibart, R. E., Hanigan, M. D., Janssen, P. H., Tavendale, M. H. & Pacheco, D. (2015). A modified version of the Molly rumen model to quantify methane emissions from sheep. Journal of Animal Science 93, 35513563.CrossRefGoogle ScholarPubMed
Wang, Y., Janssen, P. H., Lynch, T. A., van Brunt, B. & Pacheco, D. (2016). A mechanistic model of hydrogen-methanogen dynamics in the rumen. Journal of Theoretical Biology 393, 7581.Google Scholar
Wolin, M. J. (1960). A theoretical rumen fermentation balance. Journal of Dairy Science 43, 14521459.Google Scholar
Supplementary material: File

Dougherty supplementary material

Appendix 1

Download Dougherty supplementary material(File)
File 125.2 KB