Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T08:42:58.117Z Has data issue: false hasContentIssue false

A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence

Published online by Cambridge University Press:  23 January 2013

G. R. CHANTRE
Affiliation:
Departamento de Agronomía/CERZOS, Universidad Nacional del Sur/CONICET, Bahía Blanca, Buenos Aires, 8000, Argentina
A. M. BLANCO
Affiliation:
Planta Piloto de Ingeniería Química, Universidad Nacional del Sur/CONICET, Bahía Blanca, Buenos Aires, 8000, Argentina
F. FORCELLA
Affiliation:
USDA-ARS North Central Soil Conservation Research Laboratory, Morris, MN 56267, USA
R. C. VAN ACKER
Affiliation:
Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
M. R. SABBATINI
Affiliation:
Departamento de Agronomía/CERZOS, Universidad Nacional del Sur/CONICET, Bahía Blanca, Buenos Aires, 8000, Argentina
J. L. GONZALEZ-ANDUJAR*
Affiliation:
Instituto de Agricultura Sostenible (CSIC), Aptdo. 4084, 14080 Córdoba, Spain
*
*To whom all correspondence should be addressed. Email: andujar@cica.es

Summary

Non-linear regression (NLR) techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks (ANNs) present interesting and alternative features for such modelling purposes. In the present work, a univariate hydrothermal-time based Weibull model and a bivariate (hydro-time and thermal-time) ANN were developed to study wild oat emergence under non-moisture restriction conditions using data from different locations worldwide. Results indicated a higher accuracy of the neural network in comparison with the NLR approach due to the improved descriptive capacity of thermal-time and the hydro-time as independent explanatory variables. The bivariate ANN model outperformed the conventional Weibull approach, in terms of RMSE of the test set, by 70·8%. These outcomes suggest the potential applicability of the proposed modelling approach in the design of weed management decision support systems.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, R. (2009). Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. European Journal of Agronomy 30, 7077.Google Scholar
Baskin, C. C. & Baskin, J. M. (1998). Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination. San Diego, CA: Academic Press.Google Scholar
Batlla, D. & Benech-Arnold, R. L. (2007). Predicting changes in dormancy level in weed seed soil bank: implications for weed management. Crop Protection 26, 189197.Google Scholar
Beale, M. H., Hagan, M. T. & Demuth, H. B. (2011). Neural Network Toolbox, User's Guide, MATLAB. Natick, MA: The MathWorks Inc.Google Scholar
Bouwmeester, H. J. (1990). The effect of environmental conditions on the seasonal dormancy pattern and germination of weed seeds. Ph.D. Thesis, Wageningen Agricultural University, The Netherlands.Google Scholar
Bradford, K. J. (1990). A water relations analysis of seed germination rates. Plant Physiology 94, 840849.Google Scholar
Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modelling seed germination and dormancy. Weed Science 50, 248260.CrossRefGoogle Scholar
Brisson, N., Launay, M., Mary, B. & Beaudoin, N. (2008). Conceptual Basis, Formalizations and Parameterization of the STICS Crop Model. Paris, France: Quae Editions.Google Scholar
Bullied, W. J., Marginet, A. M. & Van Acker, R. C. (2003). Conventional- and conservation-tillage systems influence emergence periodicity of annual weed species in canola. Weed Science 51, 886897.Google Scholar
Bullied, W. J., Van Acker, R. C. & Bullock, P. R. (2012). Hydrothermal modelling of seedling emergence timing across topography and soil depth. Agronomy Journal 104, 423436.Google Scholar
Burnham, K. P. & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York: Springer-Verlag.Google Scholar
Cao, R., Francisco-Fernández, M., Anand, A., Bastida, F. & González-Andújar, J. L. (2011). Computing statistical indices for hydrothermal times using weed emergence data. Journal of Agricultural Science, Cambridge 149, 701712.Google Scholar
Chantre, G. R., Blanco, A. M., Lodovichi, M. V., Bandoni, J. A., Sabbatini, M. R., López, R. L., Vigna, M. R. & Gigón, R. (2012). Modelling Avena fatua seedling emergence dynamics: an artificial neural network approach. Computers and Electronics in Agriculture 88, 95102.Google Scholar
Chauhan, B. S., Gill, G. & Preston, C. (2006). Seedling recruitment pattern and depth of recruitment of 10 weed species in minimum tillage and no-till seeding systems. Weed Science 54, 658668.Google Scholar
Colbach, N. & Mézière, D. (2013). Using a sensitivity analysis of a weed dynamics model to develop sustainable cropping systems. I. Annual interactions between crop management techniques and biophysical field state variables. Journal of Agricultural Science, Cambridge 151, 229246.Google Scholar
Colbach, N., Chauvel, B., Darmency, H. & Tricault, Y. (2011). Sensitivity of weed emergence and dynamics to life-traits of annual spring-emerging weeds in contrasting cropping systems, using weed beet (Beta vulgaris ssp. vulgaris) as an example. Journal of Agricultural Science, Cambridge 149, 679700.Google Scholar
Cousens, R. D., Weaver, S. E., Martin, T. D., Blair, A. M. & Wilson, J. (1991). Dynamics of competition between wild oats (Avena fatua L.) and winter cereals. Weed Research 39, 203210.CrossRefGoogle Scholar
Foley, M. E. (1994). Temperature and water status of seed affect after ripening in wild oat (Avena fatua). Weed Science 42, 200204.Google Scholar
Fennimore, S. A., Nyquist, W. E., Shaner, G. E., Doerge, R. W. & Foley, M. E. (1999). A genetic model and molecular markers for wild oat (Avena fatua L.) seed dormancy. Theoretical and Applied Genetics 99, 711718.Google Scholar
Forcella, F. (1998). Real-time assessment of seed dormancy and seedling growth for weed management. Seed Science Research 8, 201209.CrossRefGoogle Scholar
Forcella, F., Benech-Arnold, R. L., Sánchez, R. & Ghersa, C. M. (2000). Modelling seedling emergence. Field Crops Research 67, 123139.Google Scholar
Gardarin, A., Durr, C. & Colbach, N. (2012). Modelling the dynamics and emergence of a multispecies weed seed bank with species traits. Ecological Modelling 240, 123138.Google Scholar
Gardarin, A., Guillemin, J. P., Munier-Jolain, N. M. & Colbach, N. (2010). Estimation of key parameters for weed population dynamics models: Base temperature and base water potential for germination. European Journal of Agronomy 32, 162168.CrossRefGoogle Scholar
González-Andújar, J. L., Forcella, F., Kegode, G., Gallagher, R. & Van Acker, R. (2001). Modelizacion de la emergencia de plantulas de Avena loca (Avena fatua L.) usando tiempo hidrotermal. In Congreso 2001 de la Sociedad Española de Malherbologia (Eds Boto, J. A., Villarias, J. L. & Fernandez, J. C.), pp. 243246. Leon, Spain: Universidad de León.Google Scholar
Grundy, A. C. (2003). Predicting weed emergence: a review of approaches and future challenges. Weed Research 43, 111.Google Scholar
Grundy, A. C., Peters, N. C. B., Rasmussen, I. A., Hartmann, K. A., Sattin, M., Andersson, L., Mead, A., Murdoch, A. J. & Forcella, F. (2003) Emergence of Chenopodium album and Stellaria media of different origins under different climatic conditions. Weed Research 43, 163176.CrossRefGoogle Scholar
Haj Seyed Hadi, M. R. & González-Andújar, J. L. (2009). Comparison of fitting weed seedling emergence models with nonlinear regression and genetic algorithm. Computers and Electronics in Agriculture 65, 1925.Google Scholar
Hammer, G. L., Carberry, P. S. & Muchow, R. C. (1993). Modelling genotypic and environmental control of leaf area dynamics in grain sorghum. I. Whole plant level. Field Crops Research 33, 293310.Google Scholar
Izquierdo, J., González-Andújar, J. L., Bastida, F., Lezaún, J. A. & Sánchez Del Arco, M. J. (2009). A thermal time model to predict corn poppy (Papaver rhoeas) emergence in cereal fields. Weed Science 57, 660664.CrossRefGoogle Scholar
Leguizamón, E. S., Fernandez-Quintanilla, C., Barroso, J. & Gonzalez-Andujar, J. L. (2005). Using thermal and hydrothermal time to model seedling emergence of Avena sterilis ssp. ludoviciana in Spain. Weed Research 45, 149156.Google Scholar
Lek, S. & Guégan, J. F. (1999). Artificial neural networks as a tool in ecological modelling: an introduction. Ecological Modelling 120, 6573.Google Scholar
López, R. L. & Vigna, M. R. (1991). Patrón de emergencia de Avena fatua L. en el sudoeste de Buenos Aires. In Actas X Reunión Nacional CAPERAS (Ed. Universidad Nacional del Sur), pp. 135136. Bahía Blanca, Argentina: Universidad Nacional del Sur.Google Scholar
Martinson, K., Durgan, D., Forcella, F., Wiersma, J., Spokas, K. & Archer, D. (2007). An emergence model for wild oat (Avena fatua). Weed Science 55, 584591.Google Scholar
Masin, R., Loddo, D., Benvenuti, S., Otto, S. & Zanin, G. (2012). Modelling weed emergence in Italian maize fields. Weed Science 60, 254259.CrossRefGoogle Scholar
Mickelson, J. A. & Grey, W. E. (2006). Effect of soil water content on wild oat (Avena fatua) seed mortality and seedling emergence. Weed Science 54, 255262.Google Scholar
Moschini, R. C., López, R. L., Vigna, M. R. & Damiano, F. (2009). Modelos basados en tiempo térmico e hidrotérmico para predecir la emergencia de Avena fatua en lotes con y sin labranza estival, en Argentina. In Herbología e Biodiversidade numa Agricultura Sustentável (Eds de Sousa, E., Calha, I. M., Moreira, I., Rodrigues, L., Portugal, J. & Vasconcelos, T.), pp. 239242. Lisboa, Portugal: ISA Press.Google Scholar
Onofri, A., Gresta, F. & Tei, F. (2010). A new method for the analysis of germination and emergence data of weed species. Weed Research 50, 187198.CrossRefGoogle Scholar
Onofri, A., Mesgaran, M. B., Tei, F. & Cousens, R. D. (2011). The cure model: an improvement way to describe seed germination. Weed Research 51, 516524.Google Scholar
Page, E. R., Gallagher, R. S., Kemanian, A. R., Zhang, H. & Fuerst, E. P. (2006). Modelling site-specific wild oat (Avena fatua) emergence across a variable landscape. Weed Science 54, 838846.Google Scholar
Peters, N. C. B. (1982). The dormancy of wild oat seed (Avena fatua L.) from plants grown under various temperature and soil moisture conditions. Weed Research 22, 205212.Google Scholar
Schutte, B. J., Regnier, E. E., Harrison, S. K., Schmoll, J. T., Spokas, K. & Forcella, F. (2008). A hydrothermal seedling emergence model for giant ragweed (Ambrosia trifida). Weed Science 56, 555560.CrossRefGoogle Scholar
Sharma, M. P., Mcbeath, D. K. & Vanden Born, W. H. (1976). Studies on the biology of wild oats. I. Dormancy, germination and emergence. Canadian Journal of Plant Science 56, 611618.Google Scholar
Spokas, K. & Forcella, F. (2009). Software tools for weed seed germination modelling. Weed Science 57, 216227.CrossRefGoogle Scholar