Published online by Cambridge University Press: 27 March 2009
The growth and water use of sugar beet affected by early (ED) and late (LD) drought was compared with that of irrigated (I) and unirrigated (NI) controls. Mobile shelters were used to exclude rain from ED plots during June and July, and LD plots during August and September, respectively, whereas outside these periods the ED and LD plots were irrigated as necessary.
The ED treatment affected the fibrous roots severely. Many of the roots in the top 60 cm of soil died and development of the root system below this depth was slow. Expansion of the leaf canopy slowed, radiation interception was reduced and the rate of water use fell from about 1·2 times to 0·6 times Penman potential transpiration rate. The LD treatment, which was imposed when the fibrous root system was already extensive, had little effect on the fibrous roots except in the top soil. The accessible soil water was quickly depleted and the resulting stress was accompanied by earlier senescence of leaves. The rate of converting intercepted light to crop dry matter was reduced in both treatments. However, the ED treatment was the most detrimental because the amount of light intercepted in the months of highest radiation was greatly reduced owing to the restricted leaf cover. The relative effects on growth are reflected in the final sugar yields which were 8·7, 10·5, 9·9 and 12·0 (±0·30) t/ha in the ED, LD, NI and I treatments respectively.
More of the deep soil water was used in the drought-affected plots (particularly LD) than in the irrigated controls. Maximum depths of water extraction were 140–150 cm in ED and I plots and > 170 cm in LD plots. The highest uptake rates per unit length of root (20–40 μl/cm per day) were measured in the deepest part of the root system. At all depths, uptake rates declined as the soil dried. After correcting for overestimated water use where necessary, the ratios of final dry matter and sugar yields respectively to season-long water use (June–October) were close to 1·4 and 0·8 t/ha per 25 mm for all four treatments.