Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T18:56:23.414Z Has data issue: false hasContentIssue false

Effect of potassium fertilizer on cation uptake and concentration in oat shoots

Published online by Cambridge University Press:  27 March 2009

S. M. Ragab
Affiliation:
Soils Department, Faculty of Agriculture, Al Azhar University, Cairo, Egypt

Summary

Pot experiments were carried out using a system in which root mats were in contact with a Danish soil for 24, 72 or 168 h. Different rates of K fertilizer (0–80 mg K/100 g soil) resulted in marked responses at 168 h of roots–soil contact, however moderately or little responses at 72 or 24 h had occurred. Marked reciprocal K–Ca, K–Mg, K–Na relationships with yield response to rates of applied K were attributed to both dilution and antagonism. The latter was not apparently brought about by competition for the carrier binding site but from the unspecific replacement competition which occurred in the interior of plant cells and not in the outer surface of the cell root membrane.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addisoott, T. M. & Mitchell, J. D. D. (1970). Potassium uptake by potatoes. Journal of Agricultural Science, Cambridge 74, 495500.CrossRefGoogle Scholar
Ansari, I. Q. & Bowling, D. J. F. (1972). Measurement of the transroot electrical potential of plants grown in soil. New Phytology 71, 111117.CrossRefGoogle Scholar
Davis, R. F. & Higinbotham, H. (1969). Effect of external cations and respiratory inhibitors on electrical potential of the xylem exudate of excised corn roots. Plant Physiology 44, 13831392.CrossRefGoogle ScholarPubMed
Dorph-Petersen, K. & Steenbjerg, F. (1950). Investigations of the effect of fertilizers containing sodium. Plant and Soil 2, 283300.CrossRefGoogle Scholar
Dunlop, J. & Bowling, D. J. F. (1971). The movement of ions to the xylem exudate of maize roots. II. A comparison of the electrical potential and electrochemical potentials of ions in the exudate and in the root cells. Journal of Experimental Botany 22, 445452.CrossRefGoogle Scholar
Epstein, E. (1961). The essential role of calcium in selective cation transport by plant cells. Plant Physiology 36, 437444.CrossRefGoogle ScholarPubMed
Epstein, E., Rains, D. W. & Schmid, W. E. (1962). Course of cation absorption by plant tissue. Science 136, 10511052.CrossRefGoogle ScholarPubMed
Foster, H. & Mengel, K. (1969). Der Einfles einer im Jugendstadium Kurzfristig unterbrochenen K-Ennährung auf Ertragsbidung und Gehall an Mineralstoffen und Loslichen Aminäsuren. Zuenter Acker-und Pflanzenbau 130, 203213.Google Scholar
Gerwig, J. L. & Ahlgren, G. H. (1958). The effect of different fertility levels on yield, persistence and chemical composition of alfalfa. Agronomy Journal 50, 291294.CrossRefGoogle Scholar
Handley, R., Metwally, A. & Overstreet, R. (1965). Effects of Ca upon metabolic and non-metabolic uptake of Na and Rb by root segments of Zea mays. Plant Physiology 40, 513520.CrossRefGoogle Scholar
Herter, J. B. & Shelton, F. A. (1936). The influence of certain replaceable bases in the soil upon the elemental composition of vegetable crops. Soil Science 42, 335340.CrossRefGoogle Scholar
Hewitt, E. J. (1966). Sand and Water Culture Methods Used in the Study of Plant Nutrition. Commonwealth Agricultural Bureaux, Farnham Royal, Bucks. England:Google Scholar
Hiatt, A. J. (1969). Accumulation of potassium and sodium by barley roots in a K-Na replacement series. Plant Physiology 44, 15281532.CrossRefGoogle Scholar
Hiatt, A. J. & Leggett, E. (1974). Ionic interactions and antagonism in plants. In The Plant Root and its Environment (ed. Carson, E. W.), pp. 101130. Charlottesville, U.S.A.: University Press of Virginia.Google Scholar
Higinbotham, N., Etherton, B. & Foster, R. J. (1964). Effect of external K, NH4, Mg, and H ions on the cell transmembrane electropotential of Avena Coleoptile. Plant Physiology 39, 196203.CrossRefGoogle Scholar
Higinbotham, N., Graves, J. S. & Davis, R. F. (1970). Evidence for an electrogenic transport pump in cells of higher plants. Journal of Membrane Biology 3, 210222.CrossRefGoogle ScholarPubMed
Italie, T. B. Van (1948). Cation equilibria in plants in relation to the soil. Soil Science 65, 393416.CrossRefGoogle Scholar
Larsen, W. E. & Pierre, W. H. (1953). Interaction of sodium and potassium on yield and cation composition of selected crops. Soil Science 76, 5164.CrossRefGoogle Scholar
Lucas, R. E. & Scarseth, G. D. (1947). Potassium, Calcium and magnesium balance and reciprocal relationships in plants. Journal of the American Society of Agronomy 39, 887896.CrossRefGoogle Scholar
Mass, E. V. (1969). Calcium uptake by excised maize roots and interactions with alkali cations. Plant Physiology 44, 985989.CrossRefGoogle Scholar
Mengel, K. & Forster, H. (1971). Der Einfluss der K-Konzentration der Nährlösung auf die Ertrags-bildung, die Qualitat land den K-Aufnahmeverlauf bei Hafer. Plant and Soil 35, 65–75.CrossRefGoogle Scholar
Mengel, K. & Helal, M. (1967). Der Einfluss des austaushbaren Ca junger erstenwurzeln auf den Flux con K und Phosphat – eine interpretation des Viets – Effektes. Zuchter Pflanzenphysiology 57, 223234.Google Scholar
Nielsen, J. M. (1968). On the potassium and sodium concentrations in plants. Yearbook 1969 of Royal Veterinary and Agricultural College, Copenhagen, Denmark, pp. 518.Google Scholar
Nielsen, B. F. (1969). Interpretation of chemical plant analyses and control of nutrient status of growing plants exemplified by the tomato plant. Plant and Soil 30, 183209.CrossRefGoogle Scholar
Pierce, W. S. & Higinbotham, N. (1970). Compartments and fluxes of K+, Na+, Cl- in Avena coleoplile cells. Plant Physiology 46, 666673.CrossRefGoogle Scholar
Ragab, S. M. (1972). Ionic balance and plant growth with special reference to carboxylate group. Ph.D. thesis, Al Azhar University, Cairo, Egypt.Google Scholar
Scharrer, K. & Jung, J. (1955). Der Einfluss der Ernahrung auf das verhältnis von Kationen zu Anionen i der Pflanze. Zuehter Pflanzenernährung Düng., Boden Kd. 71, 7694.CrossRefGoogle Scholar
Schuurman, J. J. & Goedewaagen, M. A. J. (1965). Methods for the Examination of Root Systems and Roots, pp. 5870. Wageningen, Holland: Centre for Agricultural Publications and Documentation.Google Scholar
Terman, G. L. & Allen, S. E. (1974). Accretion and dilution of nutrients in corn, as affected by yield response to nitrogen, phosphorus and potassium. Soil Science Society of America Proceedings 38, 455–460.CrossRefGoogle Scholar
Terman, G. L., Allen, S. E. & Bradford, B. N. (1975). Nutrient dilution antagonism effects in corn and snap beans in relation to rate and source of applied potassium. Soil Science Society of America Proceedings 39, 680–685.CrossRefGoogle Scholar