Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T13:23:18.518Z Has data issue: false hasContentIssue false

Effect of water availability and genetic diversity on flowering phenology, synchrony and reproductive investment in summer squash

Published online by Cambridge University Press:  24 September 2012

L. G. CAMPBELL*
Affiliation:
Department of Horticulture and Crop Science, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
J. LUO
Affiliation:
Department of Horticulture and Crop Science, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
K. L. MERCER
Affiliation:
Department of Horticulture and Crop Science, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
*
*To whom all correspondence should be addressed. Email: Lesley.g.campbell@ryerson.ca

Summary

Current agricultural practices rely on crops with developmental phenologies adapted to local climate, photoperiods and soils; however, global climate change will alter some abiotic factors (e.g. temperature and precipitation). Previously adapted varieties may be poorly prepared for these changing conditions, if such conditions induce mismatched phenologies. Crops that depend on cross-pollination and synchronous flowering may be most susceptible, e.g. monoecious plants have separate male and female flowers, and changes in flowering synchrony may alter yield. Using genetically diverse (open-pollinated (OP)) and genetically homogeneous (hybrid) varieties of a monoecious crop, courgette, also known as zuchinni (Cucurbita pepo), phenological responses to experimentally manipulated moisture conditions were explored in an agricultural context. Under drier and wetter conditions, the hybrid courgette plants shifted towards a male-biased floral sex ratio due to the reduced production of female flowers. However, flowering synchrony and fruit production were unaffected by moisture treatment in both varieties. The hybrid and OP varieties differed in many traits related to floral sex ratios, phenology, synchrony and fruit production. Further, the OP variety displayed more phenotypic variation than the hybrid in many traits. Being in a population context rather than relying on self-pollination increased the availability of potential mates for a given female flower in both the hybrid and, particularly, the OP variety. Thus, the increased genetic diversity found in OP v. hybrid varieties may buffer the possible environmental effects on flowering synchrony within a cropping context. Finally, the likelihood of female flowers setting fruit increased with the number of male flowers within a population, and the rate of increase was higher in the hybrid variety. In summary, climate change is predicted to reduce investment in female function in some monoecious crops and genetically diverse varieties may play an important role in maintaining reproductive synchrony in altered environments.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akinci, S. & Losel, D. M. (2009). The soluble sugars determination in Cucurbitaceae species under water stress and recovery periods. Advances in Environmental Biology 3, 175183.Google Scholar
Bawa, K. S. & Beach, J. H. (1981). Evolution of sexual systems in flowering plants. Annals of the Missouri Botanical Garden 68, 254274.CrossRefGoogle Scholar
Bertin, R. I. (1982). The evolution and maintenance of andromonoecy. Evolutionary Theory 6, 2532.Google Scholar
Bertin, R. I. (1993). Incidence of monoecy and dichogamy in relation to self-fertilization in angiosperms. American Journal of Botany 80, 557560.Google ScholarPubMed
Bickel, A. M. & Freeman, D. C. (1993). Effects of pollen vector and plant geometry on flora sex-ratio in monoecious plants. American Midland Naturalist 130, 239247.CrossRefGoogle Scholar
Blum, A., Golan, G., Mayer, J., Sinmena, B. & Obilana, T. (1992). Comparative productivity and drought response of semi-tropical hybrids and open-pollinated varieties of sorghum. Journal of Agricultural Science, Cambridge 118, 2936.CrossRefGoogle Scholar
Cabello, M. J., Castellanos, M. T., Romojaro, F., Martinex-Madrid, C. & Ribas, F. (2009). Yield and quality of melon grown under different irrigation and nitrogen rates. Agricultural Water Management 96, 866874.CrossRefGoogle Scholar
Calabrese, J. M. & Fagan, W. F. (2004). Lost in time, lonely, and single: reproductive asynchrony and the Allee effect. American Naturalist 164, 2537.CrossRefGoogle ScholarPubMed
Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., Rahmanian, M., Taheri, A., Al-Yassin, A., Benbelkacem, A., Labdi, M., Mimoun, H. & Nachit, M. (2010). Plant breeding and climate changes. Journal of Agricultural Science, Cambridge 148, 627637.CrossRefGoogle Scholar
Cobb, N. S., Trotter, R. T. & Whitham, T. G. (2002). Long-term sexual allocation in herbivore resistant and susceptible pinyon pine (Pinus edulis). Oecologia 130, 7887.CrossRefGoogle ScholarPubMed
Craufurd, P. Q. & Wheeler, T. R. (2009). Climate change and the flowering time of annual crops. Journal of Experimental Botany 60, 25292539.CrossRefGoogle ScholarPubMed
Delesalle, V. A. & Mooreside, P. D. (1995). Estimating the costs of allocation to male and female functions in a monoecious cucurbit, Lagenaria siceraria. Oecologia 102, 916.CrossRefGoogle Scholar
Doi, H., Takahashi, M. & Katano, I. (2010). Genetic diversity increases regional variation in phonological dates in response to climate change. Global Change Biology 16, 373379.CrossRefGoogle Scholar
Eitzinger, J., Orlandini, S., Stefanski, R. & Naylor, R. E. L. (2010). Climate change and agriculture: introductory editorial. Journal of Agricultural Science, Cambridge 148, 499500.CrossRefGoogle Scholar
Frankel, R. & Galun, E. (1977). Pollination Mechanisms, Reproduction and Plant Breeding. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Franks, S. J., Sim, S. & Weis, A. E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proceedings of the National Academy of Sciences of the United States of America 104, 12781282.CrossRefGoogle Scholar
Freeman, D. C., McArthur, E. D., Harper, K. T. & Blauer, A. C. (1981). Influence of environment on the floral sex-ratio of monoecious plants. Evolution 35, 194197.CrossRefGoogle ScholarPubMed
Fuhrer, J. (2003). Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems and Environment 97, 120.CrossRefGoogle Scholar
Goldman, D. A. & Willson, M. F. (1986). Sex allocation in functionally hermaphroditic plants: review and critique. Botanical Review 52, 157194.CrossRefGoogle Scholar
Hanson, P. J. & Weltzin, J. F. (2000). Drought disturbance from climate change: response of United States forests. Science of the Total Environment 262, 205220.CrossRefGoogle ScholarPubMed
Hayes, C. N., Winsor, J. A. & Stephenson, A. G. (2005). Environmental variation influences the magnitude of inbreeding depression in Cucurbita pepo ssp. texana (Cucurbitaceae). Journal of Evolutionary Biology 18, 147155.CrossRefGoogle ScholarPubMed
Herrero, M. P. & Johnson, R. R. (1980). High-temperature stress and pollen viability of maize. Crop Science 20, 796800.CrossRefGoogle Scholar
IPCC. (2007). Climate change 2007: synthesis report. In Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Core Writing Team, , R.Pachauri, K. & Reisinger, A.). Geneva, Switzerland: IPCC.Google Scholar
Krupnick, G. A., Avila, G., Brown, K. M. & Stephenson, A. G. (2000). Effects of herbivory on internal ethylene production and sex expression in Cucurbita texana. Functional Ecology 14, 215225.CrossRefGoogle Scholar
Lillemo, M., van Ginkel, M., Trethowan, R. M., Hernandez, E. & Crossa, J. (2005). Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Science 45, 24432453.CrossRefGoogle Scholar
Lisa, V. & Lecoq, H. (1984). Zucchini Yellow Mosaic Virus. Description of Plant Viruses, No. 282. Kew, UK: Commonwealth Mycological Institute and Association of Applied Biologists.Google Scholar
Lobell, D. B. & Field, C. B. (2007). Global scale climate – crop yield relationships and the impacts of recent warming. Environmental Research Letters 2, 014002. doi:10.1088/1748–9326/2/1/014002.CrossRefGoogle Scholar
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P. & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607610.CrossRefGoogle ScholarPubMed
Long, R. L., Walsh, K. B., Midmore, D. J. & Rogers, G. (2006). Irrigation scheduling to increase muskmelon fruit biomass and soluble solids concentration. Hortscience 41, 367369.CrossRefGoogle Scholar
Maynard Smith, J. (1978). The Evolution of Sex. Cambridge: Cambridge University Press.Google Scholar
Mercer, K. L. & Perales, H. R. (2010). Evolutionary response of landraces to climate change in centers of crop diversity. Evolutionary Applications 3, 480493.CrossRefGoogle ScholarPubMed
Mulcahy, D. L. (1979). The rise of the angiosperms: a genecological factor. Science 206, 2023.CrossRefGoogle ScholarPubMed
Nantoumé, A. D., Christiansen, J. L., Andersen, S. B. & Jensen, B. D. (2011). On-farm yield potential of local seed watermelon landraces under heat- and drought-prone conditions in Mali. Journal of Agricultural Science, Cambridge. DOI:10.1017/S0021859611000840.Google Scholar
NASS (2009). National Statistics Survey. Available from: http://www.nass.usda.gov/Publications/Ag_Statistics/2008/index.asp (verified 1 February 2009).Google Scholar
NASS (2011). National Statistics Survey. Available from: http://www.nass.usda.gov/Publications/Ag_Statistics/2011/index.asp (verified 01 June 2011).Google Scholar
Oliveira, A. S., Andrade, E. M. & da Silva, B. B. (1997). Soil water stress effects on flowering and yield of watermelon in the northeast of Brazil. In Annual Meeting of the Irrigation Association, Nashville Tennessee, USA. XVIII International Exposition and Technical Conference of the Irrigation Association, p. 205212. Falls Church, VA. USA: The Irrigation Association.Google Scholar
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics 37, 637669.CrossRefGoogle Scholar
Primack, R. B. (1980). Variation in the phenology of natural populations of montane shrubs in New Zealand. Journal of Ecology 68, 849862.CrossRefGoogle Scholar
Parry, M., Rosenzweig, C. & Livermore, M. (2005). Climate change, global food supply and risk of hunger. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 21252138.CrossRefGoogle ScholarPubMed
Quesada, M., Winsor, J. A. & Stephenson, A. G. (1993). Effects of pollen competition on progeny performance in a heterozygous cucurbit. American Naturalist 142, 694706.CrossRefGoogle Scholar
Reif, J. C., Hamrit, S., Heckenberger, M., Schipprack, W., Maurer, H. P., Bohn, M. & Melchinger, A. E. (2005). Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theoretical and Applied Genetics 111, 838845.CrossRefGoogle ScholarPubMed
Robinson, R. W. & Decker-Walters, D. S. (1997). Cucurbits. New York: CAB International.Google Scholar
Salem, M. A., Kakani, V. G., Koti, S. & Reddy, K. R. (2007). Pollen-based screening of soybean genotypes for high temperatures. Crop Science 47, 219231.CrossRefGoogle Scholar
Schlessman, M. A. (1982). Expression of andromonoecy and pollination of tuberous lomatiums (Umbelliferae). Systematic Botany 7, 134149.CrossRefGoogle Scholar
Sensoy, S., Ertek, A., Gedik, I. & Kucukyumuk, C. (2007). Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.). Agricultural Water Management 88, 269274.CrossRefGoogle Scholar
Sherry, R. A., Zhou, X. H., Gu, S. L., Arnone, J. A., Schimel, D. S., Verburg, P. S., Wallace, L. L. & Luo, Y. Q. (2007). Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America 104, 198202.CrossRefGoogle ScholarPubMed
Shuler, R. E., Roulston, T. H. & Farris, G. E. (2005). Farming practices influence wild pollinator populations on squash and pumpkin. Journal of Economic Entomology 98, 790795.CrossRefGoogle ScholarPubMed
Silvertown, J. (1987). The evolution of hermaphroditism – an experimental test of the resource model. Oecologia 72, 157159.Google Scholar
Solomon, B. P. (1985). Environmentally influenced changes in sex expression in an andromonoecious plant. Ecology 66, 13211332.CrossRefGoogle Scholar
Spalik, K. (1991). On evolution of andromonoecy and overproduction of flowers – a resource-allocation model. Biological Journal of the Linnean Society 42, 325336.CrossRefGoogle Scholar
Stromberg, J. C. & Patten, D. T. (1990). Flower production and floral ratios of a southwestern riparian tree, Arizona walnut (Juglans major). American Midland Naturalist 124, 278288.CrossRefGoogle Scholar
Tebaldi, C. & Lobell, D. B. (2008). Towards probabilistic projections of climate change impacts on global crop yields. Geophysical Research Letters 35, L08705. doi:10.1029/2008GL033423.CrossRefGoogle Scholar
Tepedino, V. J. (1981). The pollination efficiency of the squash bee (Peponapis pruinosa) and the honey bee (Apis mellifera) on summer squash (Cucurbita pepo). Journal of the Kansas Entomological Society 54, 359377.Google Scholar
Tollenaar, M. & Lee, E. A. (2002). Yield potential, yield stability and stress tolerance in maize. Field Crops Research 75, 161169.CrossRefGoogle Scholar
van de Wouw, M., Kik, C., van Hintum, T., van Treuren, R. & Visser, B. (2010a). Genetic erosion in crops: concepts, research results and challenges. Plant Genetic Resources 8, 115.CrossRefGoogle Scholar
van de Wouw, M., Kik, C., van Hintum, T., van Treuren, R. & Visser, B. (2010b). Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theoretical and Applied Genetics 120, 12411252.CrossRefGoogle ScholarPubMed
Waite, T. A. & Campbell, L. G. (2006). Controlling the false discovery rate and increasing statistical power in ecological studies. Ecoscience 13, 439442.CrossRefGoogle Scholar
Wall, G. W., Garcia, R. L., Kimball, B. A., Hunsaker, D. J., Pinter, P. J., Long, S. P., Osborne, C. P., Hendrix, D. L., Wechsung, F., Wechsung, G., Leavitt, S. W., LaMorte, R. L. & Idso, S. B. (2006). Interactive effects of elevated carbon dioxide and drought on wheat. Agronomy Journal 98, 354381.CrossRefGoogle Scholar
Willson, M. F. (1983). Plant Reproductive Ecology. New York: Wiley.Google Scholar
Winsor, J. A., Davis, L. E. & Stephenson, A. G. (1987). The relationship between pollen load and fruit maturation and the effect of pollen load on offspring vigor in Cucurbita pepo. American Naturalist 129, 643656.CrossRefGoogle Scholar
Yahdjian, L. & Sala, O. E. (2002). A rainout shelter design for intercepting different amounts of rainfall. Oecologia 133, 95101.CrossRefGoogle ScholarPubMed
Zand, E. & Beckie, H. J. (2002). Competitive ability of hybrid and open-pollinated canola (Brassica napus) with wild oat (Avena fatua). Canadian Journal of Plant Science 82, 473480.CrossRefGoogle Scholar