Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T04:41:42.916Z Has data issue: false hasContentIssue false

Effects of arbuscular mycorrhizal fungi on Capsicum spp.

Published online by Cambridge University Press:  28 July 2015

J. A. P. PEREIRA*
Affiliation:
CCTA, Centro de Ciências e Tecnologias Agropecuárias, UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
I. J. C. VIEIRA
Affiliation:
CCT, Centro de Ciência e Tecnologia, UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
M. S. M. FREITAS
Affiliation:
CCTA, Centro de Ciências e Tecnologias Agropecuárias, UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
C. L. PRINS
Affiliation:
CCTA, Centro de Ciências e Tecnologias Agropecuárias, UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
M. A. MARTINS
Affiliation:
CCTA, Centro de Ciências e Tecnologias Agropecuárias, UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
R. RODRIGUES
Affiliation:
CCTA, Centro de Ciências e Tecnologias Agropecuárias, UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
*
*To whom all correspondence should be addressed. Email: jappwar@hotmail.com

Summary

The benefits of mycorrhizal inoculation on growth, yield and nutrition of plants are well documented. However, mycorrhiza use in pepper and sweet pepper crops (Capsicum spp.) is still rarely exploited compared to other crops of economic importance. The current paper reviews the main aspects of the association between arbuscular mycorrhizal (AM) fungi and plants of pepper and sweet pepper. It includes topics about the effects of AM fungi on nutrition, growth and yield in Capsicum spp., paying particular attention to AM fungi–pathogen interactions, responses to some environmental stresses, as well as biochemical and physiological aspects of AM fungi–plant interaction in Capsicum annuum L.

Type
Crops and Soils Review
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afek, U., Menge, J. A. & Johnson, E. L. V. (1991). Interaction among mycorrhizae, soil solarization, metalaxyl and plants in the field. Plant Disease 75, 665671.CrossRefGoogle Scholar
Aguilera-Gómez, L., Davies, F. T. Jr., Olalde-Portugal, V., Duray, S. A. & Phavaphutanon, L. (1999). Influence of phosphorus and endomycorrhiza (Glomus intraradices) on gas exchange and plant growth of chile ancho pepper (Capsicum annuum L. cv. San Luis). Photosynthetica 36, 441449.CrossRefGoogle Scholar
Alejo-Iturvide, F., Márquez-Lucio, M. A., Morales-Ramírez, I., Vázquez-Garcidueñas, M. S. & Olalde-Portugal, V. (2008). Mycorrhizal protection of chili plants challenged by Phytophthora capsici . European Journal of Plant Pathology 120, 1320.CrossRefGoogle Scholar
Al-Karaki, G. N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae 109, 17.CrossRefGoogle Scholar
Allen, J. W. & Shachar-Hill, Y. (2009). Sulfur transfer through an arbuscular mycorrhiza. Plant Physiology 149, 549560.CrossRefGoogle ScholarPubMed
Allen, M. F., Moore, T. S. Jr. & Christensen, M. (1980). Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae: cytokinin increases in the host plant. Canadian Journal of Botany 58, 371374.CrossRefGoogle Scholar
Allen, M. F., Moore, T. S. Jr. & Christensen, M. (1982). Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Canadian Journal of Botany 60, 468471.CrossRefGoogle Scholar
Ames, R. N., Reid, C. P. P., Porter, L. K. & Cambardella, C. (1983). Hyphal uptake and transport of nitrogen from two 15N-labeled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytologist 95, 381396.CrossRefGoogle Scholar
Antonious, G. F., Berke, T. & Jarret, R. L. (2009). Pungency in Capsicum chinense: Variation among countries of origin. Journal of Environmental Science and Health B: Pesticides, Food Contaminants and Agricultural Wastes 44, 179184.CrossRefGoogle ScholarPubMed
Appendino, G. (2008). Capsaicin and capsaicinoids. In Modern Alkaloids: Structure, Isolation, Synthesis and Biology (Eds Fattorusso, E. & Taglialatela-Scafati, O.), pp. 73109. Weinheim, Germany: Wiley-VCH.Google Scholar
Augé, R. M. (2001). Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza 11, 342.Google Scholar
Augé, R. M., Schekel, K. A. & Wample, R. L. (1986). Osmotic adjustment in leaves of VA mycorrhizal and non-mycorrhizal rose plants in response to drought stress. Plant Physiology 82, 765770.CrossRefGoogle Scholar
Azcón, R. (2000). Papel de la simbiosis micorrízica y su interacción con otros microorganismos rizosféricos en el crecimiento vegetal y sostenibilidad agrícola. In Ecología, Fisiología y Biotecnologia de la Micorriza Arbucular (Eds Alarcón, A. & Ferrera-Cerrato, R.), pp. 115. Mexico: Mundi Prensa.Google Scholar
Azcón-Aguilar, C. & Barea, J. M. (1996). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens. An overview of the mechanisms involved. Mycorrhiza 6, 457464.CrossRefGoogle Scholar
Azcón-Aguilar, C., Jaizme-Veja, M. C. & Calvet, C. (2002). The contribution of arbuscular mycorrhizal fungi for bioremediation. In Mycorrhizal Technology in Agriculture: From Genes to Bioproducts (Eds Gianinazzi, S., Schüepp, H., Barea, J. M. & Haselwandter, K.), pp. 187197. Berlin: Birkhäuser Verlag.CrossRefGoogle Scholar
Bagyaraj, D. J. & Sreeramulu, K. R. (1982). Preinoculation with VA mycorrhiza improves growth and yield of chilli transplanted in the field and saves phosphatic fertilizer. Plant and Soil 69, 375381.CrossRefGoogle Scholar
Beltrano, J., Ruscitti, M., Arango, M. C. & Ronco, M. (2013). Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and P levels. Journal of Soil Science and Plant Nutrition 13, 123141.Google Scholar
Bendavid-Val, R., Rabinowitch, H. D., Katan, J. & Kapulnik, Y. (1997). Viability of VA-mycorrhizal fungi following soil solarization and fumigation. Plant and Soil 195, 185193.CrossRefGoogle Scholar
Benítez, T., Rincón, A. M., Limón, M. C. & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology 7, 249260.Google ScholarPubMed
Bieleski, R. L. (1973). Phosphate pools, phosphate transport, and phosphate availability. Annual Review of Plant Physiology 24, 225252.CrossRefGoogle Scholar
Boonlue, S., Surapat, W., Pukahuta, C., Suwanarit, P., Suwanarit, A. & Morinaga, T. (2012). Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms. Mycoscience 53, 1016.CrossRefGoogle Scholar
Bosland, P. W. (1992). Chillies: a diverse crop. HortTechnology 2, 610.CrossRefGoogle Scholar
Bowen, G. D. (1987). The biology and physiology of infection and its development. In Ecophysiology of VA Mycorrhizal Plants (Ed. Safir, G. R.), pp. 2757. Boca Raton, FL, USA: CRC Press.Google Scholar
Bürkert, B. & Robson, A. (1994). 65Zn uptake in subterranean clover (Trifolium subterraneum L.) by 3 vesicular arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biology and Biochemistry 26, 11171124.CrossRefGoogle Scholar
Cabañero, F. J., Martínez, V. & Carvajal, M. (2004). Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux, which determines calcium uptake? Plant Science 166, 443450.CrossRefGoogle Scholar
Cantrell, I. C. & Linderman, R. G. (2001). Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil 233, 269281.CrossRefGoogle Scholar
Cardona, G., Peña-Venegas, C. P. & Arcos, A. (2008). Ocurrencia de hongos formadores de micorriza arbuscular asociados a ají (Capsicum sp.) en la Amazonia colombiana. Agronomía Colombiana 26, 459470.Google Scholar
Caris, C., Hördt, W., Hawkins, H. J., Römheld, V. & George, E. (1998). Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 8, 3539.CrossRefGoogle Scholar
Carlsen, S. C. K., Understrup, A., Fomsgaard, I. S., Mortensen, A. G. & Ravnskov, S. (2008). Flavonoids in roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant and Soil 302, 3343.CrossRefGoogle Scholar
Castillo, C. G., Ortiz, C. A., Borie, F. R. & Rubio, R. E. (2009 a). Respuesta de ají (Capsicum annuum L.) cv. ‘Cacho de Cabra’ a la inoculación con hongos micorrícicos arbusculares. Informacíon Tecnológica 20, 314.Google Scholar
Castillo, C. G., Sotomayor, L., Ortiz, C. A., Leonelli, G., Borie, F. R. & Rubio, R. E. (2009 b). Effect of arbuscular mycorrhizal fungin on an ecological crop of chili peppers (Capsicum annuum L.). Chilean Journal of Agricultural Research 69, 7987.CrossRefGoogle Scholar
Çekiç, F. O., Unyayar, S. & Ortas, I. (2012). Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turkish Journal of Botany 36, 6372.Google Scholar
Chartzoulakis, K. & Klapaki, G. (2000). Response of two greenhouse pepper hybrids to NaCI salinity during different growth stages. Scientia Horticulturae 86, 247260.CrossRefGoogle Scholar
Chen, K., Liu, W., Guo, S., Liu, R. & Li, M. (2012). Diversity of arbuscular mycorrhizal fungi in continuous cropping soils used for pepper production. African Journal of Microbiology Research 6, 24692474.Google Scholar
Cimen, I., Pirinc, V., Sagir, A., Akpinar, C. & Guzel, S. (2009). Effects of solarization and vesicular arbuscular mycorrhizal fungus (VAM) on phytopthora blight (Phytophthora capsici leonian) and yield in pepper. African Journal of Biotechnology 8, 48844894.Google Scholar
Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C. M. & Rea, E. (2008). Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils 44, 501509.CrossRefGoogle Scholar
Constantino, M., Gómez-Álvarez, R., Álvarez-Solís, J. D., Geissen, V., Huerta, E. & Barba, E. (2008). Effect of inoculation with rhizobacteria and arbuscular mycorrhizal fungi on growth and yield of Capsicum chinense Jacquin. Journal of Agriculture and Rural Development in the Tropics and Subtropics 109, 169180.Google Scholar
Costa, L. M., Moura, N. F., Marangoni, C., Mendes, C. E. & Teixeira, A. O. (2010). Atividade antioxidante de pimentas do gênero Capsicum . Ciência e Tecnologia de Alimentos 30, 5159.CrossRefGoogle Scholar
Dai, O., Singh, R. K. & Nimasow, G. (2011). Effect of arbuscular mycorrhizal (AM) inoculation on growth of chili plant in organic manure amended soil. African Journal of Microbiology Research 5, 50045012.Google Scholar
Davies, F. T. Jr. & Linderman, R. G. (1991). Short term effects of phosphorus and VA-mycorrhizal fungi on nutrition, growth and development of Capsicum annuum L. Scientia Horticulturae 45, 333338.CrossRefGoogle Scholar
Davies, F. T. Jr., Potter, J. R. & Linderman, R. G. (1992). Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. Journal of Plant Physiology 139, 289294.CrossRefGoogle Scholar
Davies, F. T. Jr., Potter, J. R. & Linderman, R. G. (1993). Drought resistance of mycorrhizal pepper plants independent of leaf P concentration – response in gas exchange and water relations. Physiologia Plantarum 87, 4553.CrossRefGoogle Scholar
Davies, F. T. Jr., Olalde-Portugal, V., Alvarado, M. J., Escamilla, H. M., Ferrera-Cerrato, R. C. & Espinosa, J. I. (2000). Alleviating phosphorus stress of chile ancho pepper (Capsicum annuum L. ‘San Luis’) by arbuscular mycorrhizal inoculation. Journal of Horticultural Science and Biotechnology 75, 655661.CrossRefGoogle Scholar
Davies, F. T. Jr., Olalde-Portugal, V., Aguilera-Gómez, L., Alvarado, M. J., Ferrera-Cerrato, R. C. & Boutton, T. W. (2002). Alleviation of drought stress of chile ancho pepper (Capsicum annuum L. cv San Luis) with arbuscular mycorrhiza indigenous to Mexico. Scientia Horticulturae 92, 347359.CrossRefGoogle Scholar
Demir, S. (2004). Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turkish Journal of Biology 28, 8590.Google Scholar
Douds, D. D. Jr. & Reider, C. (2003). Inoculation with mycorrhizal fungi increases the yield of green peppers in a high P soil. Biological Agriculture & Horticulture: an International Journal for Sustainable Production Systems 21, 91102.CrossRefGoogle Scholar
Dueck, T. A., Visser, P., Ernst, W. H. O. & Schat, H. (1986). Vesicular-arbuscular mycorrhizae decrease zinc-toxicity to grasses growing in zinc-polluted soil. Soil Biology and Biochemistry 18, 331333.CrossRefGoogle Scholar
Dutta, S. & Podile, A. R. (2010). Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Critical Reviews in Microbiology 36, 232244.CrossRefGoogle ScholarPubMed
Dwivedi, D., Johri, B. N., Ineichen, K., Wray, V. & Wiemken, A. (2009). Impact of antifungals producing rhizobacteria on the performance of Vigna radiata in the presence of arbuscular mycorrhizal fungi. Mycorrhiza 19, 559570.CrossRefGoogle ScholarPubMed
Elahi, F. E., Mridha, M. A. U. & Aminuzzaman, F. M. (2012). Role of AM fungi on plant growth, nutrient uptake arsenic toxicity and chlorophyll content of chili grown in arsenic amended soil. Bangladesh Journal of Agricultural Research 37, 635644.CrossRefGoogle Scholar
Estrada-Luna, A. A. & Davies, F. T. Jr. (2003). Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. Journal of Plant Physiology 160, 10731083.CrossRefGoogle ScholarPubMed
Estrada-Luna, A. A., Davies, F. T. Jr. & Egilla, J. N. (2000). Mycorrhizal enhancement of the physiology and growth of micropropagated chile ancho pepper (Capsicum annuum L. cv. San Luis) plantlets during acclimatization and post-acclimatization. Hortscience 35, 426.Google Scholar
Fadzilla, N. M., Finch, R. P. & Burdon, R. H. (1997). Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. Journal of Experimental Botany 48, 325331.CrossRefGoogle Scholar
Faisal, M., Ahmad, T. & Srivastava, N. K. (2010). Influence of different levels of Glomus macrocarpum on growth and yield of chilli (Capsicum annum L.). Indian Journal of Scientific Research 1, 9799.Google Scholar
FAO (2010). FAOSTAT, Rome: FAO. Available from: http://faostat3.fao.org/home/index.html (accessed 10 November 2012).Google Scholar
FAO (2013). FAOSTAT, Rome: FAO. Available from: http://faostat3.fao.org/browse/Q/QC/E (accessed 6 May 2015).Google Scholar
Feng, G., Zhang, F. S., Li, X. L., Tian, C. Y., Tang, C. & Rengel, Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12, 185190.Google ScholarPubMed
Fitter, A. H. (1988). Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. Journal of Experimental Botany 39, 595603.CrossRefGoogle Scholar
Franco, A. D., Carrillo, M. A., Chairez, F. O. & Cabrera, O. G. (2013). Plant nutrition and fruit quality of pepper associated with arbuscular mycorrhizal in greenhouse. Revista Mexicana de Ciencias Agrícolas 4, 315321.Google Scholar
Franken, P. (2010). Molecular-physiological aspects of the AM symbiosis post penetration. In Arbuscular Mycorrhizas: Physiology and Function (Eds Koltai, H. & Kapulnik, Y.), pp. 93116. New York: Springer.CrossRefGoogle Scholar
Frary, A. & Frary, A. (2012). Physiology of metabolites. In Peppers: Botany, Production and Uses (Ed. Russo, V. M.), pp. 176188. Wallingford, UK: CABI.CrossRefGoogle Scholar
Fritz, M., Jakobsen, I., Lyngkjaer, M. F., Thordal-Christensen, H. & Pons-Kuehnemann, J. (2006). Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani . Mycorrhiza 16, 413419.CrossRefGoogle ScholarPubMed
García, F. R. (2003). Concentración de reguladores del desarrolo vegetal inducida por hongos endomicorrízicos en dos cultivares de chile (Capsicum annuum L.). PhD thesis, Universidad de Colima, Mexico.Google Scholar
García-Garrido, J. M. & Ocampo, J. A. (2002). Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. Journal of Experimental Botany 53, 13771386.CrossRefGoogle ScholarPubMed
Garmendia, I., Goicoechea, N. & Aguirreolea, J. (2004 a). Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against verticillium wilt. Biological Control 31, 296305.CrossRefGoogle Scholar
Garmendia, I., Goicoechea, N. & Aguirreolea, J. (2004 b). Plant phenology influences the effect of mycorrhizal fungi on the development of Verticillium-induced wilt in pepper. European Journal of Plant Pathology 110, 227238.Google Scholar
Garmendia, I., Goicoechea, N. & Aguirreolea, J. (2004 c). Antioxidant metabolism in asymptomatic leaves of Verticillium-infected pepper associated with an arbuscular mycorrhizal fungus. Journal of Phytopathology 152, 593599.CrossRefGoogle Scholar
Garmendia, I., Aguirreolea, J. & Goicoechea, N. (2006). Defence-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahliae . BioControl 51, 293310.CrossRefGoogle Scholar
Gaur, A. & Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science 86, 528534.Google Scholar
Gaur, A., Adholeya, A. & Mukerji, K. G. (1998). A comparison of AM fungi inoculants using Capsicum and Polianthes in marginal soil amended with organic matter. Mycorrhiza 7, 307312.CrossRefGoogle Scholar
George, E., Häussler, K. U., Vetterlein, D., Gorgus, E. & Marschner, H. (1992). Water and nutrient translocation by hyphae of Glomus mosseae . Canadian Journal of Botany 70, 21302137.CrossRefGoogle Scholar
Giovannetti, M., Avio, L. & Sbrana, C. (2010). Fungal spore germination and pre-symbiotic mycelial growth: physiological and genetic aspects. In Arbuscular Mycorrhizas: Physiology and Function (Eds Koltai, H. & Kapulnik, Y.), pp. 332. New York: Springer.CrossRefGoogle Scholar
Giri, B., Kapoor, R. & Mukerji, K. G. (2007). Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology 54, 753760.CrossRefGoogle ScholarPubMed
Goicoechea, N., Antolín, M. C. & Sánchez-Díaz, M. (1997). Gas exchange related the hormone balance in mycorrhizal or fixing alfalfa subjected to drought. Physiologia Plantarum 100, 989997.CrossRefGoogle Scholar
Goicoechea, N., Szalai, G., Antolín, M. C., Sánchez-Díaz, M. & Paldi, E. (1998). Influence of arbuscular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. Journal of Plant Physiology 153, 706711.CrossRefGoogle Scholar
Goicoechea, N., Garmendia, I., Sánchez-Díaz, M. & Aguirreolea, J. (2010). Review. Arbuscular mycorrhizal fungi (AM fungi) as bioprotector agents against wilt induced by Verticillium spp. in pepper. Spanish Journal of Agricultural Research 8, S25S42.CrossRefGoogle Scholar
Gonzalez-Chavez, C., Harris, P. J., Dodd, J. & Meharg, A. A. (2002). Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus . New Phytologist 155, 163171.CrossRefGoogle ScholarPubMed
González, C. A. L., Navarro, D. O. L., Herrera, A. L., Flores, M. L., Lozano, A. G. B., Mejía, J. J. A. & Llamas, J. J. L. (2010). Evaluacíon de biofertilizantes em cultivos de chile (Capsicum annuum L.) en el estado de Zacatecas. In Memorias Primer Foro para Productores de Chile (Eds Herrera, A. L., Lozano, A. G. B. & Hernández, M. R.), pp. 204217. Zacatecas, Mexico: Consejo Estatal de Productores de Chile.Google Scholar
Gosling, P., Hodge, A., Goodlass, G. & Bending, G. D. (2006). Arbuscular mycorrhizal fungi and organic farming. Agriculture, Ecosystems & Environment 113, 1735.CrossRefGoogle Scholar
Gratão, P. L., Monteiro, C. C., Antunes, A. M., Peres, L. E. P. & Azevedo, R. A. (2008). Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Annals of Applied Biology 153, 321333.CrossRefGoogle Scholar
Hammer, E. C., Nasr, H., Pallon, J., Olsson, P. A. & Wallander, H. (2011). Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21, 117129.CrossRefGoogle ScholarPubMed
Hardie, K. (1985). The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants. New Phytologist 101, 677684.CrossRefGoogle Scholar
Hattingh, M. J., Gray, L. E. & Gerdemann, J. W. (1973). Uptake and translocation of 32P-labeled phosphate to onion roots by endomycorrhizal fungi. Soil Science 116, 383387.CrossRefGoogle Scholar
Hause, B., Mrosk, C., Isayenkov, S. & Strack, D. (2007). Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68, 101110.CrossRefGoogle ScholarPubMed
Hirrel, M. C. & Gerdemann, J. W. (1980). Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Soil Science Society of America Journal 44, 654655.CrossRefGoogle Scholar
Ibrahim, M., Hassan, A. U., Iqbal, M. & Valeem, E. E. (2008). Response of wheat growth and yield to various levels of compost and organic manure. Pakistan Journal of Botany 40, 21352141.Google Scholar
Jahromi, F., Aroca, R., Porcel, R. & Ruiz-Lozano, J. M. (2008). Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology 55, 4553.CrossRefGoogle ScholarPubMed
Jansa, J., Mozafar, A. & Frossard, E. (2003). Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23, 481488.CrossRefGoogle Scholar
Javot, H., Pumplin, N. & Harrison, M. J. (2007). Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant, Cell & Environment 30, 310322.CrossRefGoogle ScholarPubMed
Joner, E. J. & Jakobsen, I. (1995). Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biology and Biochemistry 27, 11531159.CrossRefGoogle Scholar
Joner, E. J., Briones, R. & Leyval, C. (2000). Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and Soil 226, 227234.CrossRefGoogle Scholar
Joo, J. I., Kim, D. H., Choi, J. W. & Yun, J. W. (2010). Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet. Journal of Proteome Research 9, 29772987.CrossRefGoogle ScholarPubMed
Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S., Tuna, A. L. & Cullu, M. A. (2009). The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae 121, 16.CrossRefGoogle Scholar
Kim, K. Y., Cho, Y. S., Sohn, B. K., Park, R. D., Shim, J. H., Jung, S. J., Kim, Y. W. & Seong, K. Y. (2002). Cold-storage of mixed inoculum of Glomus intraradices enhances root colonization, phosphorus status and growth of hot pepper. Plant and Soil 238, 267272.CrossRefGoogle Scholar
Kim, K., Yim, W., Trivedi, P., Madhaiyan, M., Boruah, H. P. D., Islam, M. R., Lee, G. & Sa, T. (2010). Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant and Soil 327, 429440.CrossRefGoogle Scholar
Kiriachek, S. G., Azevedo, L. C. B., Peres, L. E. P. & Lambais, M. R. (2009). Regulação do desenvolvimento de micorrizas arbusculares. Revista Brasileira de Ciência do Solo 33, 116.CrossRefGoogle Scholar
Kishor, P. B. K., Sangam, S., Amrutha, R. N., Laxmi, P. S., Naidu, K. R., Rao, K. R. S. S., Rao, S., Reddy, K. J., Theriappan, P. & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science 88, 424438.Google Scholar
Knotkova, H., Pappagallo, M. & Szallasi, A. (2008). Capsaicin (TRPV1 Agonist) therapy for pain relief: farewell or revival? Clinical Journal of Pain 24, 142154.CrossRefGoogle ScholarPubMed
Korel, F., Bağdatlioğlu, N., Balaban, M. Ö. & Hisil, Y. (2002). Ground red peppers: capsaicinoids content, Scoville scores, and discrimination by an electronic nose. Journal of Agricultural and Food Chemistry 50, 32573261.CrossRefGoogle ScholarPubMed
Kosuge, S. & Furuta, M. (1970). Studies on the pungent principle of Capsicum. Part XIV chemical constitution of the pungent principle. Agricultural and Biological Chemistry 34, 248256.Google Scholar
Kothari, S. K., Marschner, H. & George, E. (1990). Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytologist 116, 303311.CrossRefGoogle Scholar
Lambais, M. R. (2000). Regulation of plant defense-related genes in arbuscular mycorrhizae. In Current Advances in Mycorrhizae Research (Eds Podila, G. K. & Douds, D. D. Jr.), pp. 4660. St. Paul, MN, USA: American Phytopathological Society Press.Google Scholar
Latef, A. A. H. A. (2011). Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza 21, 495503.CrossRefGoogle ScholarPubMed
Lee, Y. J. & George, E. (2005). Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant and Soil 278, 361370.CrossRefGoogle Scholar
Leung, F. W. (2008). Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution. Life Sciences 83, 15.CrossRefGoogle ScholarPubMed
Leyval, C. & Joner, E. J. (2001). Bioavailability of heavy metals in the mycorrhizosphere. In Trace Metals in the Rhizosphere (Eds Gobran, R. G., Wenzel, W. W. & Lombi, E.), pp. 165185. Boca Raton, FL, USA: CRC Press.Google Scholar
Li, X. L., Marschner, H. & George, E. (1991). Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant and Soil 136, 4957.CrossRefGoogle Scholar
Linderman, R. G. (1992). Vesicular-arbuscular mycorrhizae and soil microbial interactions. In Mycorrhizae in Sustainable Agriculture (Eds Bethlenfalvay, G. J. & Linderman, R. G.), pp. 4570. ASA Special Publication 54. Madison, WI, USA: American Society of Agronomy.Google Scholar
Linderman, R. G. (2000). Effects of mycorrhizas on plant tolerance to diseases. In Arbuscular Mycorrhizas: Physiology and Function (Eds Kapulnik, Y. & Douds, D. D. Jr.), pp. 345365. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Liu, J., Xiong, Z. T., Li, T. Y. & Huang, H. (2004). Bioaccumulation and ecophysiological responses to copper stress in two populations of Rumex dentatus L. from Cu contaminated and non-contaminated sites. Environmental and Experimental Botany 52, 4351.CrossRefGoogle Scholar
Liu, J., Maldonado-Mendoza, I., Lopez-Meyer, M., Cheung, F., Town, C. D. & Harrison, M. J. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. The Plant Journal 50, 529544.CrossRefGoogle Scholar
Loaiza-Figueroa, F., Ritland, K., Cancino, J. A. L. & Tanksley, S. D. (1989). Patterns of genetic variation of the genus Capsicum (Solanaceae) in Mexico. Plant Systematics and Evolution 165, 159188.CrossRefGoogle Scholar
López, P., Gorzalczany, S., Acevedo, C., Alonso, R. & Ferrraro, G. (2012). Chemical study anti-inflammatory activity of Capsicum chacoense and C. baccatum . Revista Brasileira de Farmacognosia 22, 455458.CrossRefGoogle Scholar
Lucy, M., Reed, E. & Glick, B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86, 125.CrossRefGoogle ScholarPubMed
Lugtenberg, B. J. J., De Weger, L. A. & Bennett, J. W. (1991). Microbial stimulation of plant growth and protection from disease. Current Opinion in Biotechnology 2, 457464.CrossRefGoogle Scholar
Maas, E. V. & Hoffman, G. J. (1977). Crop salt tolerance – current assessment. Journal of the Irrigation and Drainage Division 103, 115134.CrossRefGoogle Scholar
Marihal, A. K., Pradeep, S. M. & Jagadeesh, K. S. (2011). Effect of commercial mycorrhizal inoculant on growth and yield of chilli (Capsicum annum L.) in field conditions. Karnataka Journal of Agricultural Sciences 24, 589590.Google Scholar
Márquez-García, B. & Córdoba, F. (2010). Antioxidative system in wild populations of Erica andevalensis . Environmental and Experimental Botany 68, 5865.CrossRefGoogle Scholar
Marschner, P. (2012). Mineral Nutrition of Higher Plants. London: Academic Press.Google Scholar
Martin, C. A. & Stutz, J. C. (2004). Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza 14, 241244.CrossRefGoogle ScholarPubMed
McCord, J. M. (2000). The evolution of free radicals and oxidative stress. The American Journal of Medicine 108, 652659.CrossRefGoogle ScholarPubMed
Mena-Violante, H. G., Ocampo-Jiménez, O., Dendooven, L., Martínez-Soto, G., González-Castañeda, J., Davies, F. T. Jr. & Olalde-Portugal, V. (2006). Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza 16, 261267.CrossRefGoogle Scholar
Miean, K. H. & Mohamed, S. (2001). Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agricultural and Food Chemistry 49, 31063112.CrossRefGoogle ScholarPubMed
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7, 405410.CrossRefGoogle ScholarPubMed
Moran, J. F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R. V. & Aparicio-Tejo, P. (1994). Drought induces oxidative stress in pea plants. Planta 194, 346352.CrossRefGoogle Scholar
Mun, H. T., Kim, C. K. & Choe, D. M. (1990). Effect of vesicular-arbuscular mycorrhizae on the growth of bell pepper and corn seedlings. The Korean Journal of Ecology 13, 18.Google Scholar
Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651681.CrossRefGoogle ScholarPubMed
Navarro, J. M., Garrido, C., Martínez, V. & Carvajal, M. (2003). Water relations and xylem transport of nutrients in pepper plants grown under two different salts stress regimes. Plant Growth Regulation 41, 237245.CrossRefGoogle Scholar
Niu, G. H. (2012). Salt tolerance in pepper (Capsicum spp.). In Peppers: Botany, Production and Uses (Ed Russo, V. M.), pp. 150164. Wallingford: CABI.CrossRefGoogle Scholar
Niu, G. & Cabrera, R. I. (2010). Growth and physiological responses of landscape plants to saline water irrigation: a review. HortScience 45, 16051609.CrossRefGoogle Scholar
Niu, G., Rodriguez, D. S., Cabrera, R., Jifon, J., Leskovar, D. & Crosby, K. (2010). Salinity and soil type effects on emergence and growth of pepper seedlings. HortScience 45, 12651269.CrossRefGoogle Scholar
Oh, H. S., Kim, Y. S., Lim, S. C., Hou, Y. F., Chang, I. Y. & You, H. J. (2008). Dihydrocapsaicin (DHC), a saturated structural analog of capsaicin, induces autophagy in human cancer cells in a catalase-regulated manner. Autophagy 4, 10091019.CrossRefGoogle Scholar
Ortas, I., Sari, N. & Akpinar, Ç. (2003). Effect of mycorrhizal inoculation and soil fumigation on the yield and nutrient uptake of some solanaceas crops (tomato, eggplant and pepper) under field conditions. Agricoltura Mediterranea 133, 249258.Google Scholar
Ortas, I., Sari, N., Akpinar, Ç. & Yetisir, H. (2011). Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturae 128, 9298.CrossRefGoogle Scholar
Oyetunji, O. J. & Salami, A. O. (2011). Study on the control of Fusarium wilt in the stems of mycorrhizal and trichodermal inoculated pepper (Capsicum annum L.). Journal of Applied Biosciences 45, 30713080.Google Scholar
Ozgonen, H. & Erkilic, A. (2007). Growth enhancement and Phytophthora blight (Phytophthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Protection 26, 16821688.CrossRefGoogle Scholar
Ozgonen, H., Yardimci, N. & Kilic, H. C. (2009). Induction of phenolic compounds and pathogenesis-related proteins by mycorrhizal fungal inoculations against Phytophthora capsici Leonian in pepper. Pakistan Journal of Biological Sciences 12, 11811187.CrossRefGoogle ScholarPubMed
Pasternak, D. & Malach, Y. D. (1994). Crop irrigation with saline water. In Handbook of Plant and Crop Stress (Ed. Pessarakli, M.), pp. 599622. New York: Marcel Dekker.Google Scholar
Perner, H., Schwarz, D., Bruns, C., Mader, P. & George, E. (2007). Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17, 469474.CrossRefGoogle ScholarPubMed
Perry, L. (2012). Ethnobotany. In Peppers: Botany, Production and Uses (Ed. Russo, V. M.), pp. 113. Wallingford: CABI.Google Scholar
Peterson, R. L., Massicotte, H. B. & Melville, L. H. (2004). Mycorrhizas: Anatomy and Cell Biology. Ottawa: National Research Council of Canada.Google Scholar
Pozo, M. J., Cordier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J. M. & Azcón-Aguilar, C. (2002). Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany 53, 525534.CrossRefGoogle ScholarPubMed
Pozo, M. J., Jung, S. C., López-Ráez, J. A. & Azcón-Aguilar, C. (2010). Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defence mechanisms. In Arbuscular Mycorrhizas: Physiology and Function (Eds Koltai, H. & Kapulnik, Y.), pp. 193207. New York: Springer.CrossRefGoogle Scholar
Pozzobon, M. T., Schifino-Wittmann, M. T. & Bianchetti, L. B. (2006). Chromosome numbers in wild and semidomesticated Brazilian Capsicum L. (Solanaceae) species: do x = 12 and x = 13 represent two evolutionary lines? Botanical Journal of the Linnean Society 151, 259269.CrossRefGoogle Scholar
Redecker, D., Schüβler, A., Stockinger, H., Stürmer, S. L., Morton, J. B. & Walker, C. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23, 515531.CrossRefGoogle ScholarPubMed
Regvar, M., Vogel-Mikuš, K. & Ševerkar, T. (2003). Effect of AM fungi inoculum from field isolates on the yield of green pepper, parsley, carrot, and tomato. Folia Geobotanica 38, 223234.CrossRefGoogle Scholar
Rhodes, L. H. & Gerdemann, J. W. (1978). Hyphal translocation and uptake of sulfur by vesicular arbuscular mycorrhizae of onion. Soil Biology and Biochemistry 10, 355360.CrossRefGoogle Scholar
Rodrigues, E. P., Rodrigues, L. S., Oliveira, A. L. M., Baldani, V. L. D., Teixeira, K. R. S., Urquiaga, S. & Reis, V. M. (2008). Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant and Soil 302, 249261.CrossRefGoogle Scholar
Rojas-Andrade, R., Cerda-García-Rojas, C. M., Fríaz-Hernández, J. T., Dendooven, L., Olalde-Portugal, V. & Ramos-Valdivia, A. C. (2003). Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase. Mycorrhiza 13, 4952.CrossRefGoogle Scholar
Rosendahl, C. N. & Rosendahl, S. (1991). Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativus L.) to salt stress. Environmental and Experimental Botany 31, 313318.CrossRefGoogle Scholar
Rozema, J. & Flowers, T. (2008). Crops for a salinized world. Science 322, 14781480.CrossRefGoogle ScholarPubMed
Rueda-Puente, E. O., Murillo-Amador, B., Castellanos-Cervantes, T., García-Hernández, J. L., Tarazòn-Herrera, M. A., Medina, S. M. & Barrera, L. E. G. (2010). Effects of plant growth promoting bacteria and mycorrhizal on Capsicum annuum L. var. aviculare ([Dierbach] D'Arcy and Eshbaugh) germination under stressing abiotic conditions. Plant Physiology and Biochemistry 48, 724730.CrossRefGoogle ScholarPubMed
Ruiz-Lozano, J. M., Azcón, R. & Gómez, M. (1995). Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Applied and Environmental Microbiology 61, 456460.CrossRefGoogle ScholarPubMed
Ruiz-Lozano, J. M., Azcon, R. & Gomez, M. (1996). Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum 98, 767772.CrossRefGoogle Scholar
Ruscitti, M., Arango, M., Ronco, M. & Beltrano, J. (2011). Inoculation with mycorrhizal fungi modifies proline metabolism and increases chromium tolerance in pepper plants (Capsicum annuum L.). Brazilian Journal of Plant Physiology 23, 1525.CrossRefGoogle Scholar
Russo, V. M. (2006). Biological amendment, fertilizer rate, and irrigation frequency for organic bell pepper transplant production. HortScience 41, 14021407.CrossRefGoogle Scholar
Russo, V. M. & Perkins-Veazie, P. (2010). Yield and nutrient content of bell pepper pods from plants developed from seedlings inoculated, or not, with microorganisms. HortScience 45, 352358.CrossRefGoogle Scholar
Ryan, M. H., McInerney, J. K., Record, I. R. & Angus, J. F. (2008). Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. Journal of the Science of Food and Agriculture 88, 12081216.CrossRefGoogle Scholar
Safir, G. R., Boyer, J. S. & Gerdemann, J. W. (1972). Nutrient status and mycorrhizal enhancement of water transport in soybean. Plant Physiology 49, 700703.CrossRefGoogle ScholarPubMed
Sarwade, P. P., Chandanshive, S. S., Kanade, M. B., Ambuse, M. G. & Bhale, U. N. (2011). Growth effect of Capsicum annum var. Jwala plants inoculated with Glomus fasciculentum and Trichoderma species. International Multidisciplinary Research Journal 1 (12), 1316.Google Scholar
Schreiner, P. R., Ivors, K. L. & Pinkerton, J. N. (2001). Soil solarization reduces arbuscular mycorrhizal fungi as a consequence of weed suppression. Mycorrhiza 11, 273277.CrossRefGoogle ScholarPubMed
Schützendübel, A. & Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53, 13511365.Google ScholarPubMed
Schüβler, A., Shwarzott, D. & Walker, C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research 105, 14131421.CrossRefGoogle Scholar
Selvakumar, G. & Thamizhiniyan, P. (2011). The effect of the arbuscular mycorrhizal (AM) fungus Glomus intraradices on the growth and yield of chilli (Capsicum annuum L.) under salinity stress. World Applied Sciences Journal 14, 12091214.Google Scholar
Sensoy, S., Demir, S., Türkmen, O., Erdinc, C. & Savur, O. B. (2007). Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Scientia Horticulturae 113, 9295.CrossRefGoogle Scholar
Shannon, M. C. & Grieve, C. M. (1998). Tolerance of vegetable crops to salinity. Scientia Horticulturae 78, 538.CrossRefGoogle Scholar
Sharif, M. & Claassen, N. (2011). Action mechanisms of arbuscular mycorrhizal fungi in phosphorus uptake by Capsicum annuum L. Pedosphere 21, 502511.CrossRefGoogle Scholar
Silva, D. J. F., Scherer, B. S., Alves, M. K. & Oliveira, J. R. (2009). Determinação do potencial antioxidante do extrato filtrado de Capscium baccatum (pimenta dedo-de-moça) através do método DPPH. In Anais do X Salão de Iniciação Científica – PUCRS, pp. 5658. Rio Grande do Sul: EDIPUCRS.Google Scholar
Smith, S. E. & Read, D. J. (2008). Mycorrhizal Symbiosis. London: Academic Press.Google Scholar
Smith, F. A., Jakobsen, I. & Smith, S. E. (2000). Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula . New Phytologist 147, 357366.CrossRefGoogle Scholar
Sreenivasa, M. N. (1992). Selection of an efficient vesicular-arbuscular mycorrhizal fungus for chilli (Capsicum annuum L.). Scientia Horticulturae 50, 5358.CrossRefGoogle Scholar
Sreenivasa, M. N., Krishnaraj, P. U., Gangadhara, G. A. & Manjunathaiah, H. M. (1993). Response of chilli (Capsicum annuum L.) to the inoculation of an efficient vesicular-arbuscular mycorrhizal fungus. Scientia Horticulturae 53, 4552.CrossRefGoogle Scholar
Sreeramulu, K. R. & Bagyaraj, D. J. (1986). Field response of chilli to VA mycorrhiza on black clayey soil. Plant and Soil 93, 299302.CrossRefGoogle Scholar
St John, T. V., Coleman, D. C. & Reid, C. P. P. (1983). Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. Ecology 64, 957959.CrossRefGoogle Scholar
Strack, D. & Fester, T. (2006). Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytologist 172, 2234.CrossRefGoogle ScholarPubMed
Strack, D., Fester, T., Hause, B., Schliemann, W. & Water, M. H. (2003). Review paper: Arbuscular mycorrhiza: biological, chemical and molecular aspects. Journal of Chemical Ecology 29, 19551979.CrossRefGoogle Scholar
Tallapragada, P., Rajiv, R., Anjanappa, V., Sardesai, S., Selvaraj, S. & Khan, S. (2011). Comparing the potential of spent mycelium substrate of Pleurotus florida with biofertilizers to enhance growth of Capsicum annuum . Asian Journal of Plant Science and Research 1, 7686.Google Scholar
Tanwar, A., Aggarwal, A., Kadian, N. & Gupta, A. (2013). Arbuscular mycorrhizal inoculation and super phosphate application influence plant growth and yield of Capsicum annuum . Journal of Soil Science and Plant Nutrition 13, 5566.Google Scholar
Thoennissen, N. H., O'Kelly, J., Lu, D., Iwanski, G. B., La, D. T., Abbassi, S., Leiter, A., Karlan, B., Mehta, R. & Koeffler, H. P. (2010). Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene 29, 285296.CrossRefGoogle ScholarPubMed
Toler, H. D., Morton, J. B. & Cumming, J. R. (2005). Growth and metal accumulation of mycorrhizal shorgum exposed to elevated copper and zinc. Water, Air, and Soil Pollution 164, 155172.CrossRefGoogle Scholar
Trotta, A., Varese, G. C., Gnavi, E., Fusconi, A., Sampò, S. & Berta, G. (1996). Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant and Soil 185, 199209.CrossRefGoogle Scholar
Türkmen, O., Demir, S., Sensoy, S. & Dursun, A. (2005). Effects of arbuscular mycorrhizal fungus and humic acid on the seedling development and nutrient content of pepper grown under saline soil conditions. Journal of Biological Sciences 5, 568574.Google Scholar
Türkmen, O., Sensoy, S., Demir, S. & Erdinc, C. (2008). Effects of two different AM fungi species on growth and nutrient content of pepper seedlings grown under moderate salt stress. African Journal of Biotechnology 7, 392396.Google Scholar
Vyas, M. & Vyas, A. (2012). Diversity of arbuscular mycorrhizal fungi associated with rhizosphere of Capsicum annuum in Western Rajasthan. International Journal of Plant, Animal and Environmental Sciences 2, 256262.Google Scholar
Wahid, O. A. A. & Mehana, T. A. (2000). Impact of phosphate-solubilizing fungi on the yield and phosphorus uptake by wheat and faba bean plants. Microbiological Research 155, 221227.CrossRefGoogle ScholarPubMed
Wang, B., Funakoshi, D. M., Dalpé, Y. & Hamel, C. (2002). Phosphorus-32 absorption and translocation to host plants by arbuscular mycorrhizal fungi at low root-zone temperature. Mycorrhiza 12, 9396.CrossRefGoogle ScholarPubMed
Wong, G. Y. & Gavva, N. R. (2009). Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists: Recent advances and setbacks. Brain Research Reviews 60, 267277.CrossRefGoogle ScholarPubMed
Yang, Z. H., Wang, X. H., Wang, H. P., Hu, L. Q., Zheng, X. M. & Li, S. W. (2010). Capsaicin mediates cell death in bladder cancer T24 cells through reactive oxygen species production and mitochondrial depolarization. Urology 75, 735741.CrossRefGoogle ScholarPubMed
Yuan, Z-L., Dai, C-C. & Chen, L-Q. (2007). Regulation and accumulation of secondary metabolites in plant–fungus symbiotic system. African Journal of Biotechnology 6, 12661271.Google Scholar
Yücel, S. (1995). A study on soil solarization and combined with fumigant application to control Phytophthora crown blight (Phytophthora capsici Leonian) on peppers in the East Mediterranean region of Turkey. Crop Protection 14, 653655.CrossRefGoogle Scholar
Zhang, J., Schurr, U. & Davies, W. J. (1987). Control of stomatal behavior by abscisic acid which apparently originates in the roots. Journal of Experimental Botany 38, 11741181.CrossRefGoogle Scholar