Published online by Cambridge University Press: 15 October 2002
A field experiment was carried out at Harper Adams in Shropshire to investigate the effect of supplying the spring N application to winter wheat as different proportions of urea as a solution, rather than as conventional soil-applied solid urea, on N recovery in the above-ground crop, autumn soil mineral N and nitrate leaching over the subsequent winter. A solid ammonium nitrate treatment was also included to represent alternative commercial practice to solid urea. Treatments were repeated on the same plots over the 3 years 1992, 1993 and 1994. N recovery was measured in all 3 years by difference in N uptake between fertilized and unfertilized plots, and in 1993 for selected treatments, N was applied as 15N-labelled fertilizer to determine direct uptake of fertilizer N in the crop and soil. Both urea sprays and solid soil N applications were labelled with 15N. Urea sprays were split over several days to reduce scorch, whereas solid fertilizer was applied as a single dressing. For some urea spray treatments, apparent N recovery in the above-ground crop in 1992 and 1994 was less compared with soil-applied N treatments. These urea spray treatments were applied in the morning rather than the evening, and gaseous losses, most likely by volatilization, are suggested. In 1992 application of a large proportion of N as urea sprays, such that application of some N as urea solution was delayed to around GS 37, was associated with an increase in physiological N use efficiency. In 1993, there was no difference in direct or apparent recovery of fertilizer N in the crop or soil for N applied as ammonium nitrate, solid urea or as urea sprays. Mean nitrate concentration in the drainage water at 1 m was elevated for all N treatments in all years, but only in 1992 did nitrate concentration and leaching loss decrease with increasing proportion of N applied as urea sprays. It may therefore be possible to reduce gaseous losses by application of urea sprays under cool conditions in the evening and exploit the increased physiological N use efficiency for urea sprays applied later, such that total fertilizer N applied and N losses are reduced.