Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T08:43:39.287Z Has data issue: false hasContentIssue false

Electrode potentials in laboratory silage

Published online by Cambridge University Press:  27 March 2009

R. H. Common
Affiliation:
Ministry of Agriculture for Northern Ireland and the Queen's University of Belfast
W. Bolton
Affiliation:
Ministry of Agriculture for Northern Ireland and the Queen's University of Belfast

Extract

1. The average electrode potentials of laboratory silages of various types have been measured.

2. The electrode potentials of ordinary and molassed silages tended to assume values of the order of –0·05 to –0·10 V. from about the third day; the pH of these silages lay in the range pH 4·0 to 5·5.

3. In a number of instances secondary increases of electrode potential were observed, frequently in association with secondary deterioration.

4. The electrode potential of silage prepared with hydrochloric acid and of pH 3·4 remained steady around +0·18 V.; the potential of silage prepared with formic acid and of pH 3·9 was about + 0·35 V. initially but declined towards + 0·23 V. at 35 days.

5. Curves for the ‘pure’ carotene content of laboratory silages displayed minima during the early stages of fermentation except in the case of formic acid silage.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1942

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, L. A., Harrison, J., Watson, S. J. & Ferguson, W. S. (1937). J. Agric. Sci. 27, 271.CrossRefGoogle Scholar
Auerbach, F. & Zeglin, H. (1923). Z. phys. Chem. 103, 162.Google Scholar
Baumann, C. A., Steenbock, H., Ingraham, M. A. & Fred, E. B. (1933). J. Biol. Chem. 103, 339.CrossRefGoogle Scholar
Bender, C. B., Bosshardt, D. K. & Garrett, O. F. (1941). J. Dairy Sci. 24, 147.CrossRefGoogle Scholar
Bolton, W. & Common, R. H. (1942). J. Soc. Chem. Ind. 61, 50.CrossRefGoogle Scholar
Common, R. H. (1941). Analyst, 66, 407.CrossRefGoogle Scholar
Davis, J. G. (1932). J. Dairy Res. 3, 240.CrossRefGoogle Scholar
Foreman, F. W. (1920). Biochem. J. 14, 451.CrossRefGoogle Scholar
Hewitt, L. F. (1936). Oxidation-Reduction Potentials in Bacteriology and Biochemistry, 4th ed. London.Google Scholar
Moon, F. E. (1939). J. Agric. Sci. 29, 295.CrossRefGoogle Scholar
Moore, L. A. (1940). Industr. Engng Chem. (Anal, , ed.), 12, 726.Google Scholar
Peters, J. P. & Van Slyke, D. D. (1932). Quantitative Clinical Chemistry, 2.Google Scholar
Peterson, W. H., Bohstedt, G., Bird, H. R. & Benson, W. M. (1935). J. Dairy Sci. 18, 63.CrossRefGoogle Scholar
Quackenbush, F. W., Steenbock, H. & Peterson, W. H. (1938). J. Amer. Chem. Soc. 60, 2937.CrossRefGoogle Scholar
Rogers, L. A. et al. (1935). Fundamentals of Dairy Science, 2nd ed.Google Scholar
Russell, J. (1908). J. Agric. Sci. 2, 392.CrossRefGoogle Scholar
Smith, A. M. (1938). Analyst, 63, 777.CrossRefGoogle Scholar
Watson, S. J. (1939). The Science and Practice of Conservation: Grass and Forage Crops.Google Scholar
Watson, S. J. & Ferguson, W. S. (1937). J. Agric. Sci. 27, 1.CrossRefGoogle Scholar
Woodman, H. E. (1925). J. Agric. Sci. 15, 343.CrossRefGoogle Scholar
Woolley, D. W. (1941). J. Biol. Chem. 140, 311.CrossRefGoogle Scholar