Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T14:02:51.258Z Has data issue: false hasContentIssue false

Evidence of selective changes in winter wheat in middle-European environments reflected by allelic diversity at loci affecting plant height and photoperiodic response

Published online by Cambridge University Press:  19 November 2010

V. ŠÍP
Affiliation:
Crop Research Institute, Prague–Ruzyně, Czech Republic
J. CHRPOVÁ
Affiliation:
Crop Research Institute, Prague–Ruzyně, Czech Republic
A. ŽOFAJOVÁ
Affiliation:
Research Institute of Plant Production, Piešťany, Slovak Republic
Z. MILEC
Affiliation:
Crop Research Institute, Prague–Ruzyně, Czech Republic
D. MIHALIK
Affiliation:
Research Institute of Plant Production, Piešťany, Slovak Republic
K. PÁNKOVÁ*
Affiliation:
Crop Research Institute, Prague–Ruzyně, Czech Republic
J. W. SNAPE
Affiliation:
John Innes Centre, Norwich Research Park, Colney, Norwich, UK
*
*To whom all correspondence should be addressed. Email: k.pankova@vurv.cz

Summary

Genes for adaptation to climatic conditions can have an impact on the expression of genes for agricultural productivity. This study tested the hypothesis that winter wheat cultivars registered in middle Europe (especially the Czech and Slovak Republics) during the period 1976–2009 were differentially adapted to different regions, reflecting selection for different allelic combinations. This was tested by analysing for the presence of alleles at the Rht and Ppd loci using molecular markers and gibberellic acids (GA) response tests. Four allelic variants (174, 192, 165 and 198-bp) were detected at the Xgwm261 locus linked to Rht8 on chromosome 2D. The 198-bp allele was rare, but present in some of the most widely grown cultivars. Of 85 cultivars grown in the area of Czech Republic, the 174-bp allele predominated in frequency and area (39 cultivars), often in combination with Ppd-D1b (30 out of 39 cultivars) and Rht-D1b (15 out of 30 cultivars). In neighbouring Slovakia, the 192-bp allele, generally associated with Ppd-D1a, was detected in 30 out of 40 cultivars; in 12 cultivars accompanied by a GA-insensitive allele on 4B chromosome (pedigree analyses indicated a high prevalence of the Rht-B1d allele). The 192-bp (Rht8)/Ppd-D1a linkage block was broken up in 7 out of 22 cultivars that carried the 192-bp allele in the ‘Czech collection’. Analysis of the effects of year of registration on allele frequency showed a decline in GA-insensitive cultivars released recently in both countries, and great changes in the frequency of the 2D alleles during the period 1981–2009 in the Czech Republic. The pedigrees of successful cultivars were examined to find probable sources of Xgwm261 192-bp, 174-bp and 165-bp alleles on 2D and Rht genes located on chromosomes 4B and 4D. These results will impact on breeding strategies and the exploitation of existing registered wheat cultivars in different regions and growing systems.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acreche, M. M. & Slafer, G. A. (2009). Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. The Journal of Agricultural Science, Cambridge 147, 657667.CrossRefGoogle Scholar
Addisu, M., Snape, J. W., Simmonds, J. R. & Gooding, M. J. (2010). Effects of reduced height (Rht) and photoperiodic insensitivity (Ppd) alleles on yield of wheat in contrasting production systems. Euphytica 172, 169181.CrossRefGoogle Scholar
Ahmad, M. & Sorrells, M. E. (2002). Distribution of microsatellite alleles linked to Rht8 dwarfing gene in wheat. Euphytica 123, 235240.CrossRefGoogle Scholar
Bassam, B. J., Caetano-Anollés, G. & Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry 196, 8083.CrossRefGoogle ScholarPubMed
Beales, J., Turner, A., Griffiths, S., Snape, J. W. & Laurie, D. A. (2007). A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theoretical and Applied Genetics 115, 721733.CrossRefGoogle ScholarPubMed
Bobková, L. & Hromádko, M. (2008). Winter wheat Bohemia. Czech Journal of Genetics and Plant Breeding 44, 121122.CrossRefGoogle Scholar
Bobková, L., Šíp, V. & Škorpík, M. (2002). Winter wheat Rheia. Czech Journal of Genetics and Plant Breeding 38, 9091.CrossRefGoogle Scholar
Botwright, T. L., Rebetzke, G. J., Condon, A. G. & Richards, R. A. (2005). Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Annals of Botany 95, 631639.CrossRefGoogle ScholarPubMed
Braun, H. J., Rajaram, S. & van Ginkel, M. (1997). CIMMYT's approach to breeding for wide adaptation. In Adaptation in Plant Breeding (Ed. Tigerstedt, P. M. A.), pp. 197205. Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Ceccarelli, S. (1989). Wide adaptation: how wide? Euphytica 40, 197205.CrossRefGoogle Scholar
Chapman, S. C., Mathews, K. L., Trethowan, R. M. & Singh, R. P. (2007). Relationships between height and yield in near-isogenic spring wheats that contrast for major reduced height genes. Euphytica 157, 391397.CrossRefGoogle Scholar
Chebotar, S. V., Korzun, V. N. & Sivolap, Y. M. (2001). Allele distribution at locus WMS261 marking the dwarfing gene Rht8 in common wheat cultivars of Southern Ukraine. Genetika (Russia) 37, 10751080.Google ScholarPubMed
Ellis, M. H., Spielmeyer, W., Gale, K. R., Rebetzke, G. J. & Richards, R. A. (2002). “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics 105, 10381042.CrossRefGoogle ScholarPubMed
Ellis, M. H., Bonnett, D. G. & Rebetzke, G. J. (2007). A 192 bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica 157, 209214.CrossRefGoogle Scholar
Foulkes, M. J., Sylvester-Bradley, R., Worland, A. J. & Snape, J. W. (2004). Effects of a photoperiod-response gene Ppd-D1 on yield potential and drought resistance in UK winter wheat. Euphytica 135, 6373.CrossRefGoogle Scholar
Gale, M. D. & Gregory, R. S. (1977). A rapid method for early generation selection of dwarf genotypes in wheat. Euphytica 26, 733738.CrossRefGoogle Scholar
Gale, M. D. & Youssefian, S. (1985). Dwarfing genes in wheat. In Progress in Plant Breeding (Ed. Russell, G. E.), pp. 135. London: Butterworth Co.Google Scholar
Ganeva, G., Korzun, V., Landjeva, S., Tsenov, N. & Atanasova, M. (2005). Identification, distribution and effects on agronomic traits of the semi-dwarfing Rht alleles in Bulgarian common wheat cultivars. Euphytica 145, 305315.CrossRefGoogle Scholar
Holzapfel, J., Voss, H-H., Miedaner, T., Korzun, V., Häberle, J., Schweizer, G., Mohler, V., Zimmermann, G. & Hartl, L. (2008). Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theoretical and Applied Genetics 117, 11191128.CrossRefGoogle ScholarPubMed
Korzun, V., Röder, M. S., Ganal, M. W., Worland, A. J. & Law, C. N. (1998). Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 96, 11041109.CrossRefGoogle Scholar
Laml, P. & Pánek, J. (2008). Winter wheat Baletka. Czech Journal of Genetics and Plant Breeding 44, 167168.CrossRefGoogle Scholar
Landjeva, S., Korzun, V., Stoimenova, E., Truberg, B., Ganeva, G. & Börner, A. (2008). The contribution of the gibberellin-insensitive semi-dwarfing (Rht) genes to genetic variation in wheat seedling growth in response to osmotic stress. Journal of Agricultural Science, Cambridge 146, 275286.CrossRefGoogle Scholar
Liu, Y., Liu, D. C., Zhang, H. Y., Wang, J., Sun, J. Z., Guo, X. L. & Zhang, A. M. (2005). Allelic variation, sequence determination and microsatellite screening at the Xgwm261 locus in Chinese hexaploid wheat (Triticum aestivum) varieties. Euphytica 145, 103112.CrossRefGoogle Scholar
Martynov, S., Dobrotvorskaya, T., Stehno, Z. & Dotlačil, L. (1997). Genetic diversity of Czech and Slovak wheat cultivars in the period 1954–1994. Genetika a Slechteni 33, 112.Google Scholar
Mohammadi, R., Amri, A., Haghparast, R., Sadeghzadeh, D., Armion, M. & Ahmadi, M. M. (2009). Pattern analysis of genotype-by-environment interaction for grain yield in durum wheat. The Journal of Agricultural Science, Cambridge 147, 537545.CrossRefGoogle Scholar
Peltonen-Sainio, P., Muurinen, S., Rajala, A. & Jauhiainen, L. (2008). Variation in harvest index of modern spring barley, oat and wheat cultivars adapted to northern growing conditions. The Journal of Agricultural Science, Cambridge 146, 3547.CrossRefGoogle Scholar
Pestsova, E. & Röder, M. (2002). Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theoretical and Applied Genetics 106, 8491.CrossRefGoogle ScholarPubMed
Phillips, S. L. & Wolfe, M. S. (2005). Evolutionary plant breeding for low input systems. Journal of Agricultural Science, Cambridge 143, 245254.CrossRefGoogle Scholar
Rebetzke, G. J., Bruce, S. E. & Kirkegaard, J. A. (2005). Longer coleoptiles improve emergence through crop residues to increase seedling number and biomass in wheat (Triticum aestivum L.). Plant and Soil 272, 87100.CrossRefGoogle Scholar
Reynolds, M. P. & Borlaug, N. E. (2006). Applying innovations and new technologies for international collaborative wheat improvement. Journal of Agricultural Science, Cambridge 144, 95110.CrossRefGoogle Scholar
Reynolds, M., Calderini, D., Condon, A. & Vargas, M. (2007). Association of source/sink traits with yield, biomass and radiation use efficiency among random sister lines from three wheat crosses in a high-yield environment. Journal of Agricultural Science, Cambridge 145, 316.CrossRefGoogle Scholar
Richards, R. A., Watt, M. & Rebetzke, G. J. (2007). Physiological traits and cereal germplasm for sustainable agricultural systems. Euphytica 154, 409425.CrossRefGoogle Scholar
Sener, O., Arslan, M., Soysal, Y. & Erayman, M. (2009). Estimates of relative yield potential and genetic improvement of wheat cultivars in the Mediterranean region. Journal of Agricultural Science, Cambridge 147, 323332.CrossRefGoogle Scholar
Šíp, V., Amler, P., Bobková, L. & Škorpík, M. (1988). Efficiency of early generation selection for Rht2 in a Czechoslovak wheat breeding programme. In Proceedings of the 7th International Wheat Genetics Symposium, Cambridge, UK, 13–19 July 1988 (Eds Miller, T. E. & Koebner, R. M. D.), vol. 2, pp. 11751180. Cambridge, UK: Institute of Plant Science Research.Google Scholar
Šíp, V., Amler, P., Bobková, L. & Škorpík, M. (1991). Choosing parents and crosses for bread wheat breeding programmes. Vorträge für Pflanzenzüchtung 20, 215219.Google Scholar
Šíp, V., Škorpík, M. & Chrpová, J. (1995). Identification of Rht genes in the three Czech spring wheat varieties. Genetika a Slechteni 31, 2533 (in Czech).Google Scholar
Šíp, V., Růžek, P., Chrpová, J., Vavera, R. & Kusá, H. (2009). The effect of tillage practice, input level and environment on the grain yield of winter wheat in the Czech Republic. Field Crops Research 113, 131137.CrossRefGoogle Scholar
Šíp, V., Chrpová, J., Žofajová, A., Pánková, K., Užík, M. & Snape, J. W. (2010). Effects of specific Rht and Ppd alleles on agronomic traits in winter wheat cultivars grown in middle Europe. Euphytica 172, 221233.CrossRefGoogle Scholar
Stehno, Z., Dotlačil, L., Faberová, I., Martynov, S. & Dobrotvorskaya, T. (2003). Genealogical analysis of the genetic diversity in winter wheat cultivars grown in the former Czechoslovakia and the present Czech Republic during 1919–2001. Czech Journal of Genetics and Plant Breeding 39, 99108.CrossRefGoogle Scholar
Strampelli, N. (1932). I miei lavori: origini e sviluppi – I grani della Vittoria. In Origini, Sviluppi, Lavori e Risultati, pp. 47110. Rome: Istituto Nazionale di Genetica per la Cerealicoltura di Roma, Alfieri & Lacroix.Google Scholar
Tambussi, E. A., Bort, J. & Araus, J. L. (2007). Water use efficiency in C3 cereals under Mediterranean conditions: a review of physiological aspects. Annals of Applied Biology 150, 307321.CrossRefGoogle Scholar
Trethowan, R. M., Singh, R. P., Huerta-Espino, J., Crossa, J. & van Ginkel, M. (2001). Coleoptile length of near isogenic Rht lines of modern CIMMYT bread and durum wheats. Field Crops Research 70, 167176.CrossRefGoogle Scholar
Wolfe, M. S., Baresel, J. P., Desclaux, D., Goldringer, I., Hoad, S., Kovacs, G., Lőschenberger, F., Miedaner, T., Ǿstergård, H. & Lammerts van Bueren, E. T. (2008). Developments in breeding cereals for organic agriculture. Euphytica 163, 323346.CrossRefGoogle Scholar
Worland, A. J. & Law, C. N. (1986). Genetic analysis of chromosome 2D of wheat.1. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow-rust resistance. Zeitschrift für Pflanzenzüchtung–Journal of Plant Breeding 96, 331345.Google Scholar
Worland, A. J. & Petrovic, S. (1988). The gibberellic acid insensitive dwarfing gene from the wheat Saitama 27. Euphytica 38, 5563.CrossRefGoogle Scholar
Worland, A. J., Korzun, V., Röder, M. S., Ganal, M. W. & Law, C. N. (1998). Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theoretical and Applied Genetics 96, 11101120.CrossRefGoogle Scholar
Worland, A. J., Sayers, E. J. & Korzun, V. (2001). Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes. Euphytica 119, 155159.CrossRefGoogle Scholar