Hostname: page-component-6bb9c88b65-kzqxb Total loading time: 0 Render date: 2025-07-20T16:35:43.589Z Has data issue: false hasContentIssue false

Frequency of genetic variations associated with milk yield and composition in seven Zebu breeds

Published online by Cambridge University Press:  27 June 2025

Gaspar Manuel Parra-Bracamonte*
Affiliation:
Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
José Fernando Vázquez-Armijo
Affiliation:
Centro Universitario Temascaltepec, Universidad Autónoma del Estado de México, Temascaltepec, State of Mexico, México
Xochitl Fabiola De la Rosa-Reyna
Affiliation:
Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
Juan Gabriel Magaña-Monforte
Affiliation:
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
Juan Carlos Martínez-González
Affiliation:
Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas, México
Nicolás Lopez-Villalobos
Affiliation:
Centro Universitario Temascaltepec, Universidad Autónoma del Estado de México, Temascaltepec, State of Mexico, México School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
Jessica Beatriz Herrera-Ojeda
Affiliation:
Departamento de Ingenierías, Instituto Tecnológico del Valle de Morelia, Instituto Tecnológico Nacional, Morelia, Michoacán, México
Victor I. Pacheco-Contreras
Affiliation:
Instituto Tecnológico Superior de Tepeaca, Puebla, México
*
Corresponding author: Gaspar Manuel Parra-Bracamonte; Email: gparra@ipn.mx

Abstract

Maternal ability (milk and environment) in beef cattle is one of the most important traits influencing weaning weight of the calf, but amount and composition of milk produced by the dam is difficult to measure. The assessment of polymorphisms of candidate genes related to milk composition could indirectly enlighten this perspective. In the present study, the frequency of αs1-casein 1175AG and g26181A>G; κ-casein 13068 (CSN3 AB1) and 13104 (CSN3 AB2) loci, β-lactoglobulin variants 3984GA and 5263CT, Diacyl glycerol transferase K232A, and Stearoyl CoA desaturase A702G and A762G polymorphisms were estimated in Gray and Red Brahman, Nellore, Guzerat, Gir, Indubrazil, and Sardo Negro registered sires from Mexico. Most of the documented favourable alleles were found in low frequency in most of the evaluated breeds, except for β-lactoglobulin, in which the presence of favourable alleles might represent an opportunity for marker-assisted introgression. The relevance of the findings for each variation and implications from the outcomes are discussed.

Information

Type
Animal Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agrawala, PL, Wagner, VA and Geldermann, H (1992) Sex determination and milk protein genotyping of preimplantation stage bovine embryos using multiplex PCR. Theriogenology 38, 969978.Google Scholar
Azevedo, ALS, Nascimento, CS, Steinberg, RS, Carvalho, MRS, Peixoto, MGCD, Teodoro, RL and Machado, MA (2008) Genetic polymorphism of the kappa-casein gene in Brazilian cattle. Genetics and Molecular Research 7, 623630.Google Scholar
Badola, S, Bhattacharya, TK, Biswas, TK, Kumar, P and Sharma, A (2003) Association of beta-lactoglobulin polymorphism with milk production traits in cattle. Asian-Australasian Journal of Animal Sciences 16, 15601564.Google Scholar
Badola, S, Bhattacharya, TK, Biswas, TK, Shivakumar, BM, Kumar, P and Sharma, A (2004) A comparison on polymorphism of beta-lactoglobulin gene in Bos indicus, Bos taurus and indicine× taurine crossbred cattle. Asian-Australasian Journal of Animal Sciences 17, 733736.Google Scholar
Banos, G, Woolliams, JA, Woodward, BW, Forbes, AB and Coffey, MP (2008) Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows. Journal of Dairy Science 91, 31903200.Google Scholar
Barbosa, SBP, Araújo, ÍIMD, Martins, MF, Silva, ECD, Jacopini, LA, Batista, ÂMV and Silva, MVBD (2019) Genetic association of variations in the kappa-casein and β-lactoglobulin genes with milk traits in Girolando cattle. Revista Brasileira de Saúde e Produção Animal 20, 112.Google Scholar
Bobbo, T, Tiezzi, F, Penasa, M, De Marchi, M and Cassandro, M (2018) Short communication: association analysis of diacylglycerol acyltransferase (DGAT1) mutation on chromosome 14 for milk yield and composition traits, somatic cell score, and coagulation properties in Holstein bulls. Journal of Dairy Science 101, 80878091.Google Scholar
Bovenhuis, H, Visker, MHPW, Poulsen, NA, Sehested, J, van Valenberg, HJF, van Arendonk, JAM, Larsen, LB and Buitenhuis, AJ (2016) Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk. Journal of Dairy Science 99, 31133123.Google Scholar
Caroli, AM, Chessa, S and Erhardt, GJ (2009) Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition. Journal of Dairy Science 92, 53355352.Google Scholar
Castellanos, GL, Oliva, H, Granados, Z and Quiro, J (2016) Antecedentes de bovinos productores de leche en el estado de Tabasco: ganado Pardo Suizo, Gyr y F1 Holstein x Gyr. Temas de Ciencia y Tecnología 20, 312.Google Scholar
Cendron, F, Franzoi, M, Penasa, M, De Marchi, M and Cassandro, M (2021) Effects of β-and κ-casein, and β-lactoglobulin single and composite genotypes on milk composition and milk coagulation properties of Italian Holsteins assessed by FT-MIR. Italian Journal of Animal Science 20, 22432253.Google Scholar
Cooke, RF, Cardoso, RC, Cerri, RLA, Lamb, GC, Pohler, KG, Riley, DG and Vasconcelos, JLM (2020b) Cattle adapted to tropical and subtropical environments: Genetic and reproductive considerations. Journal of Animal Science 98, skaa015.Google Scholar
Cooke, RF, Daigle, CL, Moriel, P, Smith, SB, Tedeschi, LO and Vendramini, JBO (2020a) Cattle adapted to tropical and subtropical environments: Social, nutritional, and carcass quality considerations. Journal of Animal Science 98, skaa014.Google Scholar
D’Alessandro, A, Zolla, L and Scaloni, A (2011) The bovine milk proteome: cherishing, nourishing and fostering molecular complexity. An interactomics and functional overview. Molecular BioSystems 7, 579597.Google Scholar
Eigel, WN, Butler, JE, Ernstrom, CA, Farrell, HM Jr, Harwalkar, VR, Jenness, R and Whitney, RM (1984) Nomenclature of proteins of cow’s milk: Fifth revision. Journal of Dairy Science 67, 15991631.Google Scholar
Estrada-León, RJ, Magaña-Monforte, JG, Segura-Correa, JC and Parra-Bracamonte, GM (2024) Maternal effects and its importance in the genetic evaluations of preweaning live weight traits of beef cattle. A review. Tropical Animal Health and Production 56, 260.Google Scholar
Gautier, M, Capitan, A, Fritz, S, Eggen, A, Boichard, D and Druet, T (2007) Characterization of the DGAT1 K232A and variable number of tandem repeat polymorphisms in French dairy cattle. Journal of Dairy Science 90, 29802988.Google Scholar
Gothwal, A, Magotra, A, Bangar, YC, Malik, B S, Yadav, AS and Garg, AR (2023) Candidate K232A mutation of DGAT1 gene associated with production and reproduction traits in Indian Dairy cattle. Animal Biotechnology 34, 26082616.Google Scholar
Grisart, B, Coppieters, W, Farnir, F, Karim, L, Ford, C, Berzi, P, Cambisano, N, Mni, M, Reid, S, Simon, P, Spelman, R, Georges, M and Snell, R (2002) Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research 12, 222231.Google Scholar
Grisart, B, Farnir, F, Karim, L, Cambisano, N, Kim, JJ, Kvasz, A, Mni, M, Simon, P, Frere, JM, Coppieters, W,and Georges, M (2004) Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proceedings of the National Academy of Sciences of the United States of America 101, 23982403.Google Scholar
Gurses, M, Yuce, H, Etem, EO and Patir, B. (2016) Polymorphisms of kappa-casein gene and their effects on milk production traits in Holstein, Jersey and Brown Swiss cattle. Animal Production Science 58, 778784.Google Scholar
Heck, JML, Schennink, A, Van Valenberg, HJF, Bovenhuis, H, Visker, MHPW, Van Arendonk, JAM and Van Hooijdonk, ACM (2009) Effects of milk protein variants on the protein composition of bovine milk. Journal of Dairy Science 92, 11921202.Google Scholar
Hohmann, LG, Weimann, C, Scheper, C, Erhardt, G and König, S (2020) Associations between maternal milk protein genotypes with preweaning calf growth traits in beef cattle. Journal of Animal Science 98, skaa280.Google Scholar
Houaga, I, Muigai, AW, Ng’ang’a, FM, Ibeagha-Awemu, EM, Kyallo, M, Youssao, IA, and Stomeo, F (2018) Milk fatty acid variability and association with polymorphisms in SCD1 and DGAT1 genes in White Fulani and Borgou cattle breeds. Molecular Biology Reports 45, 18491862.Google Scholar
Huang, W, Peñagaricano, F, Ahmad, KR, Lucey, JA, Weigel, KA and Khatib, H (2012) Association between milk protein gene variants and protein composition traits in dairy cattle. Journal of Dairy Science 95, 440449.Google Scholar
Jacobs, AAA, Dijkstra, J, Hendriks, WH, van Baal, J and van Vuuren, AM (2013) Comparison between stearoyl-CoA desaturase expression in milk somatic cells and in mammary tissue of lactating dairy cows. Journal of Animal Physiology and Animal Nutrition 97, 353362.Google Scholar
Kemenes, PA, Regitano, LCDA, Rosa, AJDM, Packer, IU, Razook, AG, Figueiredo, LAD and Coutinho, LL (1999) k-Casein, b-lactoglobulin and growth hormone allele frequencies and genetic distances in Nelore, Gyr, Guzerá, Caracu, Charolais, Canchim and Santa Gertrudis cattle. Genetics and Molecular Biology 22, 539541.Google Scholar
Kęsek-Woźniak, MM, Wojtas, E and Zielak-Steciwko, AE (2020) Impact of SNPs in ACACA, SCD1, and DGAT1 genes on fatty acid profile in bovine milk with regard to lactation phases. Animals 10, 997.Google Scholar
Kgwatalala, PM, Ibeagha-Awemu, EM, Mustafa, AF and Zhao, X (2009) Influence of stearoyl-coenzyme A desaturase 1 genotype and stage of lactation on fatty acid composition of Canadian Jersey cows. Journal of Dairy Science 92, 12201228.Google Scholar
Kishore, A, Mukesh, M, Sobti, RC, Mishra, BP and Sodhi, M (2013) Variations in the regulatory region of alpha S1-casein milk protein gene among tropically adapted Indian native (Bos Indicus) cattle. International Scholarly Research Notices 2013, 110. Google Scholar
Koch, BHR (1999) Características raciales de la raza Brahman en Venezuela. En: La Cátedra del Cebú: 1º Ciclo de Conferencia Raza Brahman. Universidad Nacional Experimental de los Llanos Occidentales Ezequiel Zamora. Guanare, Venezuela. ASOCEBU; 25 y 26 de Junio 1(1), 19.Google Scholar
Koczan, D, Hobom, G and Seyfert, HM (1993) Characterization of the bovine αs1-casein gene C-allele, based on Mae III polymorphism. Animal Genetics 24, 74.Google Scholar
Kucerova, J, Matejicek, A, Jandurová, OM, Sorensen, P, Nemcova, E, Stipkova, M, Koot, T, Bouška, J and Frelich, J (2006) Milk protein genes CSN1S1, CSN2, CSN3, LGB and their relation to genetic values of milk production parameters in Czech Fleckvieh. Czech Journal of Animal Science 51(6), 241.Google Scholar
Kuss, AW, Gogol, J, Bartenschlager, H. and Geldermann, H (2005) Polymorphic AP-1 binding site in bovine CSN1S1 shows quantitative differences in protein binding associated with milk protein expression. Journal of Dairy Science 88, 22462252.Google Scholar
Lacorte, GA, Machado, MA, Martinez, ML, Campos, AL, Maciel, RP, Verneque, RS and Fonseca, CG (2006) DGAT1 K232A polymorphism in Brazilian cattle breeds. Genetics and Molecular Research 5, 475482.Google Scholar
Lühken, G, Caroli, A, Ibeagha-Awemu, EM and Erhardt, G (2009) Characterization and genetic analysis of bovine αs1-casein I variant. Animal Genetics 40, 479485.Google Scholar
Matosinho, CGR, Fonseca, PA, Peixoto, MGCD, Rosse, IC, Lopes, FCF, Zózimo, T, Filho, AEV, Bruneli, FÂT and Carvalho, MRS (2023) Gama, M.A.S. Phenotypic variation in milk fatty acid composition and its association with stearoyl-CoA desaturase 1 (SCD1) gene polymorphisms in Gir cows. Journal of Animal Breed and Genetics 140, 532548.Google Scholar
Mele, M, Conte, G, Castiglioni, B, Chessa, S, Macciotta, NPP, Serra, A, Buccioni, A, Pagnacco, G and Secchiari, P (2007) Stearoyl-coenzyme A desaturase gene polymorphism and milk fatty acid composition in Italian Holsteins. Journal of Dairy Science 90, 44584465.Google Scholar
Milanesi, E, Nicoloso, L and Crepaldi, P (2008) Stearoyl CoA desaturase (SCD) gene polymorphisms in Italian cattle breeds. Journal of Animal Breeding and Genetics 125, 6367.Google Scholar
Mir, SN, Ullah, O and Sheikh, R (2014) Genetic polymorphism of milk protein variants and their association studies with milk yield in Sahiwal cattle. African Journal of Biotechnology 13, 555565.Google Scholar
Mohan, G, Kumar, A, Khan, SH, Kumar, NA, Kapila, S, Lathwal, SS and Niranjan, SK (2021) Casein (CSN) gene variants and parity affect the milk protein traits in crossbred (Bos taurus x Bos indicus) cows in sub-tropical climate. Tropical Animal Health and Production 53, 289.Google Scholar
Mu, T, Hu, H, Ma, Y, Feng, X, Zhang, J and Gu, Y (2021) Regulation of key genes for milk fat synthesis in ruminants. Frontiers in Nutrition 8, 115.Google Scholar
Mueller, ML and Van Eenennaam, AL (2022) Synergistic power of genomic selection, assisted reproductive technologies, and gene editing to drive genetic improvement of cattle. CABI Agriculture and Bioscience 3, 13 Google Scholar
Näslund, J, Fikse, WF, Pielberg, GR and Lundén, A (2008) Frequency and effect of the bovine acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism in Swedish dairy cattle. Journal of Dairy Science 91, 21272134.Google Scholar
Ocampo, TJR (2004) Razas de ganado Cebú. Cebú Mexicano 2004(1), 24–4.Google Scholar
Paranhos da Costa, MJR, Schmidek, A and Toledo, LM (2008) Mother-offspring interactions in zebu cattle. Reproduction in Domestic Animals 43(Suppl. 2), 213216.Google Scholar
Parra-Bracamonte, GM, Martinez-Gonzalez, JC, Sifuentes-Rincón, AM and Rosa-Reyna, XF (2018) Signatures of selection from candidate gene polymorphisms panel in five zebu breeds. Brazilian Archives of Biology and Technology 61, e18180177.Google Scholar
Parra-Bracamonte, GM, Sifuentes, AM, De la Rosa, XF and Arellano, WV (2011) Avances y perspectivas de la biotecnología genómica aplicada a la ganadería en México. Tropical and Subtropical Agroecosystems 14, 10251037.Google Scholar
Patel, J and Chauhan, J (2017) Evaluation of DGAT1-exon 8 K232A substitution in gir and kankrej (Bos indicus), Indian origin cattle and its association with milk production traits. Genetika 49, 627634.Google Scholar
Patel, RK, Chauhan, JB, Singh, KM and Soni, KJ (2007) Allelic frequency of kappa-casein and beta-lactoglobulin in Indian crossbred (Bos taurus x Bos indicus) dairy bulls. Turkish Journal of Veterinary & Animal Sciences 31, 399402.Google Scholar
Prinzenberg, EM, Jianlin, H and Erhardt, G (2008) Genetic variation in the κ-casein gene (CSN3) of Chinese yak (Bos grunniens) and phylogenetic analysis of CSN3 sequences in the genus Bos. Journal of Dairy Science 91, 11981203.Google Scholar
Prinzenberg, EM, Krause, I and Erhardt, G (1999) SSCP analysis at the bovine CSN3 locus discriminates six alleles corresponding to known protein variants (A, B, C, E, F, G) and three new DNA polymorphisms (H, I, A1). Animal Biotechnology 10, 4962.Google Scholar
Rachagani, S and Gupta, ID (2008) Bovine kappa-casein gene polymorphism and its association with milk production traits. Genetics and Molecular Biology 31, 893897.Google Scholar
Rojo-Rubio, R, Vázquez-Armijo, JF, Pérez-Hernández, P, Mendoza-Martínez, GD, Salem, AZM, Albarrán-Portillo, B, González-Reyna, A, Hernández-Martínez, J, Rebollar-Rebollar, S, Cardoso-Jiménez, D, Dorantes-Coronado, EJ and Gutierrez-Cedillo, JG (2009) Dual purpose cattle production in Mexico. Tropical Animal Health and Production 41, 715721.Google Scholar
Román-Ponce, SE, Ruiz-López, F, Montaldo, HH, Rizzi, R and Román-Ponce, H (2013) Efectos de cruzamiento para producción de leche y caraterísticas de crecimiento en bovinos de doble propósito en el trópico húmedo. Revista Mexicana de Ciencias Pecuarias 4, 405416.Google Scholar
Rousset, F (2008) Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8, 103106.Google Scholar
Samuel, B, Dadi, H and Dinka, H (2023) Effect of the DGAT1 K232A mutation and breed on milk traits in cattle populations of Ethiopia. Frontiers in Animal Science 4, 1096706.Google Scholar
Sanders, JO (1980) History and development of Zebu cattle in the United States. Journal of Animal Science 50, 11881200.Google Scholar
Santana, ML, Pereira, RJ, Bignardi, AB, el Faro, L, Tonhati, H and Albuquerque, LG (2014) History, structure, and genetic diversity of Brazilian Gir cattle. Livestock Science 163, 2633.Google Scholar
Steinberg, RS, Carvalho, MRS, Rosse, IC, Machado, MA and Peixoto, MGCD (2022) Polymorphisms in genes coding milk proteins and protein hormones involved in milk production traits in Brazilian Guzerá cattle. Genetics and Molecular Research 21, 115.Google Scholar
Szymanowska, M, Strzalkowska, N, Siadkowska, E, Krzyzewski, J, Ryniewicz, Z and Zwierzchowski, L (2003) Effects of polymorphism at 5’-noncoding regions (promoters) of αS1-and αS2-casein genes on selected milk production traits in Polish Black-and-White cows. Animal Science Papers and Reports 21, 97108.Google Scholar
Tăbăran, A, Balteanu, VA, Gal, E, Pusta, D, Mihaiu, R, Dan, SD, Tăbăran, AF and Mihaiu, M (2015) Influence of DGAT1 K232A polymorphism on milk fat percentage and fatty acid profiles in romanian holstein cattle. Animal Biotechnology 26, 105111.Google Scholar
Taniguchi, M, Utsugi, T, Oyama, K, Mannen, H, Kobayashi, M, Tanabe, Y and Tsuji, S (2004) Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mammalian Genoma 15, 142148.Google Scholar
Tsiaras, AM, Bargouli, GG, Banos, G and Boscos, CM (2005) Effect of kappa-casein and beta-lactoglobulin loci on milk production traits and reproductive performance of Holstein cows. Journal of Dairy Science 88, 327334.Google Scholar
Ward, A, Ng’ang’I, SI, Randhawa, AS, McHugo, P, O’Grady, F, Flórez, M, Browne, A, Pérez, AM, Landaeta-Hernández, J, Garcia, F, Sonstegard, S, Frantz, AF, Salter-Townshend, M and MacHugh, E (2024) Genomic insights into the population history and adaptive traits of Latin American Criollo cattle. Royal Society Open Science 11, 116.Google Scholar
Worku, D, Gowane, G, Alex, R, Joshi, P and Verma, A. (2022) Inputs for optimizing selection platform for milk production traits of dairy Sahiwal cattle. PLoS One 23, 17.Google Scholar
Zepeda-Batista, JL, Alarcón-Zúñiga, B, Ruíz-Flores, A, Núñez-Domínguez, R and Ramírez-Valverde, R (2015) Polymorphism of three milk protein genes in Mexican Jersey cattle. Electronic Journal of Biotechnology 18, 14.Google Scholar
Supplementary material: File

Parra-Bracamonte et al. supplementary material 1

Parra-Bracamonte et al. supplementary material
Download Parra-Bracamonte et al. supplementary material 1(File)
File 192.2 KB
Supplementary material: File

Parra-Bracamonte et al. supplementary material 2

Parra-Bracamonte et al. supplementary material
Download Parra-Bracamonte et al. supplementary material 2(File)
File 16.2 KB