Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-21T04:09:17.180Z Has data issue: false hasContentIssue false

Gamma radiation in the preparation of maize silage for studies on the aerobic deterioration process

Published online by Cambridge University Press:  27 March 2009

M. K. Woolford
Affiliation:
The Grassland Research Institute, Hurley, Maidenhead, Berkshire, SL6 5LR

Summary

Maize silage was exposed to doses of y radiation varying from 0 to 6 Mrad inclusive and the effects of this treatment on the microflora and possible changes it might impose on the chemical composition were monitored. The highest dose was required to reduce the native population of micro-organisms to an insignificant level and only minor losses of lactic acid and ethanol were sustained. In addition, the irradiated silage was inoculated with representatives of groups of micro-organisms implicated in the aerobic deterioration of silage and the subsequent changes upon exposure to air observed. The inoculum proliferated and induced losses of fermentation acids, water-soluble carbohydrates, dry matter and, to a minor degree, neutral detergent fibre, and resulted in an increase in temperature and total nitrogen, the factors most likely to change during aerobic deterioration. Only the 6 Mrad dose yielded material suitable for investigations into the identification of those organisms primarily responsible for aerobic deterioration.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association Of Official Agricultural Chemists (1965). Official Methods of Analysis of the Association of Official Agricultural Chemists, 10th edn.Washington: Association of Official Agricultural Chemists.Google Scholar
Bousset, J., Bousset-Fatianoff, N., Gotjet, P. & Contrepois, M. (1972). Ensilages ‘gnototoxéniques’ de fourrages. 2. Catabolisme des glucides et métabolisme fermentaire dans des ensilages ‘gnototoxéniques’ de Luzerne, Fétuquo et Ray-grass. Annales de Biologic Animate, Biochimie et Biophysique 12, 453477.CrossRefGoogle Scholar
Cawse, P. A. (1975). Microbiology and biochemistry of silage. In Soil Biochemistry 3 (ed. Paul, E. A. and McLaren, A. D.), pp. 213267. New York: Marcel Dekker.Google Scholar
Gouet, P., Contrepois, M., Bousset, J. & Bousset-Fatianoff, N. (1972). Ensilages ‘gnototoxéniques’ de fourrages. 1. Etude cinétique du développement bactérien dans des ensilages ‘gnototoxéniques’ de Luzerne, Fétuque et Bay-grass. Annales de Biologie Animate, Biochimie et Biophysique 12, 159171.CrossRefGoogle Scholar
Gouet, P., Girardeau, J. P. & Riou, Y. (1977). Inhibition of Listeria monocytogenes by defined lactic microflora in gnotobiotic silages of lucerne, fescue, ryegrass and maize – influence of dry matter and temperature. Animal Feed Science and Technology 2, 297305.CrossRefGoogle Scholar
Honig, H. & Woolford, M. K. (1980). Changes in silage on exposure to air. Occasional Symposium of the British Grassland Society No. 11, pp. 7687.Google Scholar
Kibe, K., Ewart, J. M. & Mcdonald, P. (1977). Chemical studies with silage micro-organisms in artificial media and sterile herbages. Journal of the Science of Food and Agriculture 28, 355364.CrossRefGoogle Scholar
Mabbitt, L. A. (1951). The role of plant cells in the ensilage process: an approach to the problem. Proceedings of the Society for Applied Bacteriology 14, 147150.CrossRefGoogle Scholar
Nilsson, P. E. (1957). Aseptic cultivation of higher plants. Archiv für Mikrobiologie 26, 285301.CrossRefGoogle ScholarPubMed
Nilsson, P. E. (1958). Preparation of microbe-free silage. Archiv für Mikrobiologie 30, 280284.CrossRefGoogle Scholar
Stirling, A. C. (1961). Microbe-free grass as an aid in the investigation of silage fermentations. 8th International Congress for Microbiology, Toronto, p. 44 (Abstract).Google Scholar
Wilson, R. F. (1980). Estimation of ‘true’ protein in herbages and conserved feeds. Occasional Symposium of the British Grassland Society No. 11, pp. 323326.Google Scholar
Wilson, R. F. & Wilkins, R. J. (1978). Paraformaldehyde as a silage additive. Journal of Agricultural Science, Cambridge 91, 2329.CrossRefGoogle Scholar
Woolford, M. K., Bolsen, K. K. & Peart, L. A. (1982). Studies on the aerobic deterioration of wholecrop cereal silages. Journal of Agricultural Science, Cambridge 98, 529535.CrossRefGoogle Scholar
Woolford, M. K. & Cook, J. E. (1978). A note on the effects on the aerobic deterioration of maize silage of the manipulation of the microflora by means of antibiotics. Animal Feed Science and Technology 3, 8994.CrossRefGoogle Scholar
Woolford, M. K., Cook, J. E. & Hall, D. M. (1976). Aerobic deterioration of silage. Annual Report, 1975 Grassland Research Institute, Hurley, pp. 4445.Google Scholar
Woolford, M. K., Honig, H. & Fenlon, J. S. (1977) Untersuchungen über aeroben Umsetzungen in Silage mit Hilfe einer Labortechnik. 1. Beschreibung und statistische Bewertung der Methode. Das Wirtschaftseigene Futter 23, 1022.Google Scholar
Woolford, M. K., Honig, H. & Fenlon, J. S. (1978). Untersuchungen über aeroben Umsetzungen in Silage mit Hilfe einer Labortechnik. 2. Mikrobiologische, physikalische und chemische Veränderungen während des aeroben Abbaus von Maissilage. Das Wirtschaftseigene Futter 24, 125139.Google Scholar
Woolford, M. K., Honig, H. & Fenlon, J. S. (1979). Untersuchungen über aeroben Umsetzungen in Silage mit Hilfe einer Labortechnik. 3. Mikrobiologische, physikalische und chemische Veränderungen während des aeroben Abbaus in frischer und angewelkter grassilage. Das Wirtschaftseigene Futter 25, 158177.Google Scholar