Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-19T05:08:58.405Z Has data issue: false hasContentIssue false

Genetics of tannin content and its relationship with flower and testa colours in Vicia faba

Published online by Cambridge University Press:  27 March 2009

A. Cabrera
Affiliation:
Departamento de Genética, Escuela Técnica Superior de Ingenieros Agrónomos, Apartado 3048, 14080 Córdoba, Spain
A. Martin
Affiliation:
Departamento de Genética, Escuela Técnica Superior de Ingenieros Agrónomos, Apartado 3048, 14080 Córdoba, Spain

Summary

Tannin content of the testa was estimated in crosses among six Vicia faba lines of diverse origin using the vanillin-HCl method. Additive genetic variance was predominant in the inheritance of tannin content. Two white-flowered parents possessed different genetic information for tannin content when the pleiotropic effect of genes for white flowers was eliminated. The genes controlling red testa (r), spotted flower (Sdp) and yellow pigment on the flower (yf) negatively influenced tannin content in the testa. Breeding for low tannin content in Vicia faba is feasible and selection can be based on plants with yellow-spotted flowers and red testas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bond, D. A. (1976). In vitro digestibility of the testa in tannin-free field beans (Vicia faba L.). Journal of Agricultural Science, Cambridge 86, 561566.CrossRefGoogle Scholar
Boughdad, A., Guillon, Y.Gagnepain, C. (1986). Influence des tanins condensés du tégument de fèves (Viciafaba L.) sur le développement larvaire de Callosobruchus maculatus. Entomologia Experimenlalis el Applicata 42, 125132.CrossRefGoogle Scholar
Broadhurst, R. B. & Jones, W. T. (1978). Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture 29, 788794.CrossRefGoogle Scholar
Cabrera, A. & Martin, A. (1986). Variation in tannin content in Vicia faba L. Journal of Agricultural Science, Cambridge 106, 377382.CrossRefGoogle Scholar
Cavalli, L. (1952). An analysis of linkage in quantitative inheritance. In Quantitative Inheritance (Eds Reeve, E. R. C. & Waddington, C. H.), pp. 135144. London: HMSO.Google Scholar
Coen, E. S. & Carpenter, R. (1986). Transposable elements in Antirrhinum majus: generators of genetic diversity. Trends in Genetics 11, 292296.CrossRefGoogle Scholar
Crofts, H. J., Evans, L. E. & McVetty, P. B. (1980). Inheritance, characterization and selection of tannin-free fababeans (Vicia faba L.) Canadian Journal of Plant Science 60, 11351140.CrossRefGoogle Scholar
Dickinson, D., Knight, H. & Rees, D. I. (1957). Varieties of broad beans suitable for canning. Chemistry and Industry 16, 1503.Google Scholar
Firmin, J. L., Wilson, K. E., Rossen, L. & Johnston, A. W. (1986). Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 324, 9092.CrossRefGoogle Scholar
Griffiths, D. W. & Jones, D. I. (1977). Cellulase inhibition by tannins in the testa of field beans (Vicia faba L.). Journal of the Science of Food and Agriculture 28, 983989.CrossRefGoogle Scholar
Jacob, M. & Rubery, P. H. (1988). Naturally occurring auxin transport regulators. Science 241, 346349.CrossRefGoogle Scholar
Kristiansen, N. K. (1984). Biosynthesis of proantho-cyanidins in barley: genetic control of the conversion of dihydroquercetin to catechin and procyanidins. Carlsberg Research Communications 49, 503524.CrossRefGoogle Scholar
Marquardt, R. R. (1983). Antimetabolites in faba beans: metabolic significance. FAB1S Newsletter 7, 14.Google Scholar
Marquardt, R. R. & Campbell, L. D. (1973). Raw and autoclaved faba beans in chick diets. Canadian Journal of Animal Science 53, 741746.CrossRefGoogle Scholar
Marquardt, R. R., Ward, A. T., Campbell, L. D. & Cansfield, P. E. (1977). Purification, identification and characterization of a growth inhibitor in faba beans (Vicia faba L. var. minor). Journal of Nutrition 107, 13131324.CrossRefGoogle Scholar
Martin-Tanguy, J., Guillaume, J. & Kossa, A. (1976). Condensed tannins in horse bean seeds; chemical structure and effects on the food value of the horse bean in growing poultry. In Protein Quality from Leguminous Crops (Ed. Picard, J.), pp. 162182. Brussels and Luxembourg: EC-Commission, EUR 5686 EN.Google Scholar
Mather, K. & Jinks, J. L. (1971). Biometrical Genetics. London: Chapman & Hall.CrossRefGoogle ScholarPubMed
Picard, J. (1976). Aperçu sur l'hérédité du caractère absence de tanins dans les graines de féverole (Vicia faba L). Annales de l'Amélioration des Plantes 28, 101106.Google Scholar
Rowlands, D. G. & Corner, J. J. (1962). Genetics of pigmentation in broad bean (Vicia faba L.). Third Congress of Eucarpia, Paris, pp. 229234.Google Scholar
Sirks, M. J. (1931). Beiträge zur einer genotypischen Analyse der Ackerbohne, Vicia faba L. Genetica 13, 209631.CrossRefGoogle Scholar
Sjödin, J., Martensson, P. & Magyarosi, T. (1981). Selection for antinutritional substances in field bean (Vicia faba L.). Zeitschrift für Pflanzenzüchtung 86, 231247.Google Scholar
Statler, G. D. (1970). Resistance of bean plants to Fusarium solani f. phaseoli. Plant Disease Reporter 54, 698699.Google Scholar