Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T08:17:18.360Z Has data issue: false hasContentIssue false

Investigations into copper deficiency in crops in East Anglia

Published online by Cambridge University Press:  27 March 2009

N. H. Pizer
Affiliation:
National Agricultural Advisory Service
T. H. Caldwell
Affiliation:
National Agricultural Advisory Service
G. R. Burgess
Affiliation:
National Agricultural Advisory Service
J. L. O. Jones
Affiliation:
National Agricultural Advisory Service

Extract

1. An account is given of the occurrence of copper deficiency in crops grown on the Fenland peats and glacial sands of East Anglia. Copper deficiency in the crops appears to be due to actual deficiency of available copper in the peat and sandy soils. The level of copper extracted from soils by an acid solution (pH 4.0) of the ammonium salt of E.D.T.A. provides a useful indication of soils deficient in copper, though the occurrence of the deficiency and its severity in crops is influenced by other soil factors, level of water-table in peats, species of crop and weather during the growing season.

2. Of the crops grown on the peat and sandy soils of East Anglia the most susceptible to copper deficiency are cereals. Visual symptoms of deficiency are described as these provide an important aid in diagnosis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnd, T. & Hoffman, W. (1937). Landw. Vers. sta. 127, 71.Google Scholar
Chatwin, C. P. (1961). British Regional Geology. H.M.S.O.Google Scholar
Cheng, K. L. & Bray, R. H. (1935). Anal. Chem. 25, 655.CrossRefGoogle Scholar
Henriksen, A. (1956). Nature, Lond., 178, 499.CrossRefGoogle Scholar
Martens, R. L. & Guthens, R. E. (1952). Anal. Chem. 24, (6), 991.CrossRefGoogle Scholar
Menzel, R. G. & Jackson, M. L. (1951). Anal. Chem. 23, (12), 1861.CrossRefGoogle Scholar
Mitchell, R. L., Reith, J. W. S. & Johnston, M. (1957). Symposium, Inst. de Recherches pour les huiles et oleagineux, Paris. 249.Google Scholar
Mulder, E. G. (1949). Pl. Soil, 2, (1), 94.CrossRefGoogle Scholar
Nicholas, D. J. D. & Fielding, A. H. (1947). Long Ashton Res. Sta. Rept. 126.Google Scholar
Nicholson, H. H. & Firth, D. H. (1953). J. Agric. Sci. 43, 95.CrossRefGoogle Scholar
Pizer, N. H., Wright, H. A., Caldwell, T. H., Hargrave, J., Burgess, G. R., Cory, V. & Boyd, D. A. (1961). J. Agric. Sci. 56, 197.CrossRefGoogle Scholar
Sjollema, B. (1933). Biochem. Z. 151, and Bied. Zbl. 6, 224.Google Scholar
Trist, P. J. O. (1952). Trans. Suffolk Nat. Soc. 8 (1).Google Scholar
Viro, P. J. (1955). Soil. Sci. 79, 459.CrossRefGoogle Scholar