Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T13:09:27.836Z Has data issue: false hasContentIssue false

Investigations on copper deficiency in plants

Published online by Cambridge University Press:  27 March 2009

C. S. Piper
Affiliation:
Waite Agricultural Research Institute, University of Adelaide

Extract

A water-culture technique has been described which makes it possible to determine with precision the effects on plant growth resulting from the absence of traces of the various heavy metals.

The essential nature of copper for plant growth has been confirmed, and the quantitative data presented show that the addition of traces of copper to a nutrient solution leads to increases of growth of the order of 200–1200%.

The characteristic symptoms produced by growing oats, peas, wheat, Wimmera rye-grass, Phalaris, flax, tomato, subterranean clover, and lucerne in nutrient solutions devoid of copper are described. Copper becomes necessary for normal healthy growth at an early seedling stage and is required so long as active growth is proceeding. Optimum growth of oats was obtained throughout a wide range of copper concentration in the nutrient solution.

Oats grown in a copper-free nutrient solution until the development of acute deficiency symptoms recovered and completed their normal life cycle on the addition of sufficient copper to the solution.

The copper content of oats at various stages of growth has been determined. The proportion of copper in the dry matter of the plant was greatest in the young stages and rapidly decreased as growth proceeded.

The copper content of mature oat plants showing symptoms of copper deficiency was less than 1·0 mg. per kg. whether grown in nutrient solution or obtained from copper-deficient soils. Oats which ceased growth from copper deficiency at an earlier stage of development contained a relatively greater amount of copper in their dry matter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1942

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allison, R. V., Bryan, O. C. & Hunter, J. H. (1927). Bull. Fla agric. Exp. Sta. no. 190, pp. 3380.Google Scholar
Arnd, T. & Hoffmann, W. (1937). Landw. VersSta. 129, 7199.Google Scholar
Baldwin, J. G. & Crocker, R. L. (1941). Trans, roy. Soc. S. Aust. (in the Press).Google Scholar
Becker, R. B., Neal, W. M. & Shealy, A. L. (1931). Bull. Fla agric. Exp. Sta. no. 231.Google Scholar
Bennetts, H. W. & Chapman, F. E. (1937). Aust. Vet. J. 13, 138–49.CrossRefGoogle Scholar
Brandenberg, E. (1933). Tijdschr. Plziekt. 39, 189–92.Google Scholar
Brandenberg, E. (1935). Meded. Inst. Suikerbiet, Bergen-o.-Z., Afl. 9.Google Scholar
Brenchley, W. E. (1910). Ann. Bot., Land., 24, 571–83.CrossRefGoogle Scholar
Brenchley, W. E. (1938). Ann. appl. Biol. 25, 671–94.CrossRefGoogle Scholar
Corner, H. H. & Smith, A. M. (1938). Biochem. J. 32, 1800–5.CrossRefGoogle Scholar
Densch, A. & Hunnius, W. (1924). Z. PflErnähr. Düng. A, 3, 369–86.Google Scholar
Elvehjem, C. A. & Hart, E. B. (1929). J. biol. Chem. 82, 473–7.CrossRefGoogle Scholar
Felix, E. L. (1927). Phytopathology, 17, 4950.Google Scholar
Floyd, B. F. (1913). Rep. Fla agric. Exp. Sta. 19121913, pp. 2730.Google Scholar
Floyd, B. F. (1917). Bull. Fla agric. Exp. Sta. no. 140.Google Scholar
Greaves, J. E. & Andersen, A. (1936). J. Nutrit. 11, 111–18.CrossRefGoogle Scholar
Hoffmann, W. (1939). Bodenk. und Pflanzenern. 13, 139–55.CrossRefGoogle Scholar
Hudig, J., Meyer, C. & Goodyk, R. J. (1926). Z. PflErnähr. Düng. A, 8, 1452.Google Scholar
Lipman, C. B. & Mackinney, G. (1931). Plant Physiol. 6, 593–9.CrossRefGoogle Scholar
Lutman, B. F. (1911). Bull. Vt agric. Exp. Sta. no. 162.Google Scholar
Marston, H. R. & McDonald, I. W. (1938). Bull. Coun. sci: industr. Res. Aust. no. 113.Google Scholar
Piper, C. S. (1938). Pamph. Coun. sci. industr. Res. Aust. no. 78, pp. 24–8.Google Scholar
Piper, C. S. & Oertel, A. C. (1941). Industr. Engng Chem., Anal, ed., 13, 191–2.CrossRefGoogle Scholar
Rademacher, B. (1936). Arb. biol. Abt. (Anst.—Reichsanst.), Berl., 21, 532603.Google Scholar
Rademacher, B. (1938). Forsch. Dienst. 7, 149–60.Google Scholar
Reed, H. S. (1939). Amer. J. Bot. 26, 2933.CrossRefGoogle Scholar
Riceman, D. S. & Anderson, A. J. (1941). J. Aust. Inst. agric. Sci. 7, 82.Google Scholar
Riceman, D. S., Donald, C. M. & Evans, S. T. (1940). Pamph. Coun. sci. industr. Res. Aust. no. 96.Google Scholar
Samuel, G. & Piper, C. S. (1929). Ann. appl. Biol. 16, 493524.Google Scholar
Scharrer, K. & Schropp, W. (1933). Z. PflErnähr. Düng. A, 32, 184200.CrossRefGoogle Scholar
Van Schreven, D. A. (1936 a). Meded. Inst. Suikerbiet., Berge.n-o.-Z., Afl. 2.Google Scholar
Van Schreven, D. A. (1936 b). Phytopathology, 26, 1106–17.Google Scholar
Sjollema, B. (1933). Biochem. Z. 267, 151–6.Google Scholar
Sommer, A. L. (1931). Plant Physiol. 6, 339–45.CrossRefGoogle Scholar
Steinberg, R. A. (1935). J. agric. Res. 51, 413–24.Google Scholar
Stout, P. R. & Arnon, D. I. (1939). Amer.J. Bot. 26, 144–9.CrossRefGoogle Scholar
Sylvester, N. D. & Lampitt, L. H. (1935). Analyst, 60, 376–82.CrossRefGoogle Scholar
Teakle, L. J. H. et al. (1939). J. Dep. Agric. W. Aust. 16, 116–28, 135–47.Google Scholar
Teakle, L. J. H. (1941). J. Dep. Agric. W. Aust. 18, 7086, 91–132.Google Scholar
Teakle, L. J. H., Turton, A. G. & Throssell, G. L. (1940). J. Dep. Agric. W. Aust. 17, 161–73.Google Scholar