Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T08:23:57.125Z Has data issue: false hasContentIssue false

Long-term yield variability and detection of site-specific climate-smart nutrient management practices for rice–wheat systems: an empirical approach

Published online by Cambridge University Press:  03 March 2014

N. SUBASH*
Affiliation:
Project Directorate for Farming Systems Research (ICAR), Modipuram-250110, Meerut, UP, India
B. GANGWAR
Affiliation:
Project Directorate for Farming Systems Research (ICAR), Modipuram-250110, Meerut, UP, India
S. SINGH
Affiliation:
Project Directorate for Farming Systems Research (ICAR), Modipuram-250110, Meerut, UP, India
A. K. KOSHAL
Affiliation:
Project Directorate for Farming Systems Research (ICAR), Modipuram-250110, Meerut, UP, India
V. KUMAR
Affiliation:
Project Directorate for Farming Systems Research (ICAR), Modipuram-250110, Meerut, UP, India
*
*To whom all correspondence should be addressed. Email: n_suby@rediffmail.com, nsubashpdfsr@gmail.com

Summary

Identification of climate-smart nutrient management practices will overcome the ill effects of extreme climate variability on agricultural production under projected climate change scenarios. The rice–wheat cropping system is the major system used in India: using long-term yield data from Integrated Nutrient Management experiments on this system, the present study analysed trends in weather parameters and grain yield under different nutrient management practices. Twelve treatments with different combinations of inorganic (chemical fertilizer) and organic (farmyard manure (FYM), green manure (GM) and crop residue) sources of nutrients were compared with farmers’ conventional practices. A significant increasing trend was noticed for rainfall during the rice season at Kalyani and Navsari, of the order of 137·7 and 154·2 mm/decade, respectively. The highest increase in maximum temperature was seen at Palampur (1·62 °C/decade) followed by Ludhiana (1·14 °C/decade). At all the sites except Ludhiana and Kanpur, the yield of the rice–wheat system showed an increasing trend ranging from 0·08 t/ha/year in Jabalpur to 0·011 t/ha/year in Navsari, under the recommended dose of inorganic fertilizer application. A significant decreasing trend of 0·055 t/ha was found in Ludhiana. For most of the sites, a combination of half the recommended dose of inorganic fertilizer and either FYM or GM to provide the remainder of the N required was sufficient to maintain productivity. The top three climate-resilient integrated nutrient management practices were identified for all the study sites. Thus, the present study highlights the adaptive capacity of different integrated nutrient management practices to rainfall and temperature extremes under rice–wheat cropping system in distinctive agro-ecological zones of India.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aggarwal, P. K. (2008). Global climate change and Indian agriculture: impacts, adaptation and mitigation. Indian Journal of Agricultural Sciences 78, 911919.Google Scholar
Aggarwal, P. K., Bandyopadhyay, S. K., Pathak, H., Kalra, N., Chander, S. & Kumar, S. (2000). Analysis of the yield trends of rice–wheat system in north-western India. Outlook on Agriculture 29, 259268.Google Scholar
Aggarwal, P. K., Joshi, P. K., Ingram, J. S. I. & Gupta, R. K. (2004). Adapting food systems of the Indo-Gangetic Plains to global environmental change: key information needs to improve policy formulation. Environmental Science and Policy 7, 487498.Google Scholar
Aggarwal, P. K., Kumar, N. S. & Pathak, H. (2010). Impacts of Climatic Change on Growth and Yield of Rice and Wheat in the Upper Ganga Basin. WWF Report 2010. New Delhi: WWF.Google Scholar
Bhandari, A. L., Ladha, J. K., Pathak, H., Padre, A. T., Dawe, D. & Gupta, R. K. (2002). Yield and soil nutrient changes in a long-term rice–wheat rotation in India. Soil Science Society of America Journal 66, 162170.Google Scholar
Bouman, B., Barker, R., Humphreys, E. & Tuong, T. P. (2007). Rice: feeding the billions. In Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture (Molden, Coordinator D.), pp. 515549. London and Colombo: Earthscan and International Water Management Institute. Available from: http://www.iwmi.cgiar.org/Assessment/ (accessed November 2013).Google Scholar
Brown, J. F., Pervez, S., Wardlow, B., Tadesse, T. & Callahan, K. (2008). Assessment of 2006 and 2007 drought patterns in the vegetation drought response index across Nebraska. In Pecora 17 – The Future of Land Imaging: Going Operational. Article no. 9. Bethesda, MD, USA: American Society for Photogrammetry and Remote Sensing. Available from: http://www.asprs.org/Conference-Proceedings/ASPRS-Pecora-17-Conference-Proceedings.html (accessed November 2013).Google Scholar
Brunetti, M., Buffoni, L., Maugeri, M. & Nanni, T. (2000 a). Precipitation intensity trends in northern Italy. International Journal of Climatology 20, 10171031.Google Scholar
Brunetti, M., Maugeri, M. & Nanni, T. (2000 b). Variations of temperature and precipitation in Italy from 1866 to 1995. Theoretical and Applied Climatology 65, 165174.Google Scholar
Challinor, A. J., Slingo, J. M., Wheeler, T. R., Craufurd, P. Q. & Crimes, D. I. F. (2003). Toward a combined seasonal weather and crop productivity forecasting system: determination of the working spatial scale. Journal of Applied Meteorology 42, 175192.2.0.CO;2>CrossRefGoogle Scholar
Challinor, A. J., Wheeler, T. R., Slingo, J. M., Craufurd, P. Q. & Grimes, D. I. F. (2005). Simulation of crop yields using ERA-40: limits to skill and nonstationarity in weather–yield relationships. Journal of Applied Meteorology 44, 516531.Google Scholar
Chaturvedi, R. K., Joshi, J., Jayaraman, M., Bala, G. & Ravindranath, N. H. (2012). Multi-model climate change projections for India under representative concentration pathways. Current Science 103, 791802.Google Scholar
Chiew, F. & Sirivardena, L. (2005). TREND: Trend/change Detection Software Manual. CRC for Catchment Hydrology 29. Bruce, ACT, Australia: eWater. Available from: http://www.toolkit.net.au/Tools/DownloadDocumentation.aspx?id=1000134 (accessed November 2013).Google Scholar
Dawe, D., Dobermann, A., Moya, P., Abdulrachman, S., Singh, B., Lal, P., Li, S. Y., Lin, B., Panaullah, G., Sariam, O., Singh, Y., Swarup, A., Tan, P. S. & Zhen, Q. X. (2000). How widespread are yield declines in long-term rice experiments in Asia? Field Crops Research 66, 175193.Google Scholar
Dinesh Kumar, M., Devaraju, K. M., Madaiah, D. & Shivakumar, K. V. (2009). Effect of integrated nutrient management on yield and nutrient content by Cardamom (Elettaria Cardamomum L. Maton.). Karnataka Journal of Agricultural Sciences 22, 10161019.Google Scholar
Duxbury, J. M., Abrol, I. P., Gupta, R. K. & Bronson, K. F. (2000). Summary: analysis of long-term soil fertility experiments with rice–wheat rotations in South Asia. In Long-Term Soil Fertility Experiments in Rice–Wheat Cropping Systems (Eds Abrol, I. P., Bronson, K., Duxbury, J. M. & Gupta, R. K.), pp. viixxii. New Delhi, India: Rice–Wheat Consortium for the Indo-Gangetic Plains.Google Scholar
Easterling, W. E., Chen, X., Hays, C., Brandle, J. R. & Zhang, H. (1996). Improving the validation of model-simulated crop yield response to climate change: an application to the EPIC model. Climate Research 6, 263273.Google Scholar
Farooq, M., Bramley, H., Palta, J. A. & Siddique, K. H. M. (2011). Heat stress in wheat during reproductive and grain filling phases. Critical Reviews in Plant Sciences 30, 491507.CrossRefGoogle Scholar
Gopinathan, C. K. (2000). An indirect method for forecasting the annual food production of India. Current Science 79, 2324.Google Scholar
Gui, D. W., Lei, J. Q. & Zeng, F. J. (2010). Farmland management effects on the quality of surface soil during oasification in the southern rim of the Tarim Basin in Xinjiang, China. Plant Soil and Environment 56, 348356.CrossRefGoogle Scholar
Gupta, R., Gopal, R., Jat, M. L., Jat, R. K., Sidhu, H. S., Minhas, P. S. & Malik, R. K. (2010). Wheat productivity in Indo-Gangetic Plains of India during 2010: terminal heat effects and mitigation strategies. Conservation Agriculture Newsletter 14, 13.Google Scholar
Hirsch, R. M., Slack, J. R. & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research 18, 107121.Google Scholar
Indian Council of Agricultural Research (ICAR) (1998). Decline in Crop Productivity in Haryana and Punjab: Myth or Reality? Report of the Fact Finding Committee, May 1998. New Delhi: Indian Council of Agricultural Research.Google Scholar
Inter-governmental Panel on Climate Change (IPCC) (2007 a). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L.). Cambridge, UK and New York, NY, USA: Cambridge University Press.Google Scholar
Inter-governmental Panel on Climate Change (IPCC) (2007 b). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC (Eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.). Cambridge, UK: Cambridge University Press.Google Scholar
Jat, M. L., Saharawat, Y. S. & Gupta, R. K. (2011). Conservation agriculture in cereal systems of south Asia: nutrient management perspectives. Karnataka Journal of Agricultural Sciences 24, 100105.Google Scholar
Jearakongman, S., Rajatasereekul, S., Naklang, K., Romyen, P., Fukai, S., Skulkhu, E., Jumpaket, B. & Nathabutr, K. (1995). Growth and grain yield of contrasting rice cultivars grown under different conditions of water availability. Field Crops Research 44, 139150.Google Scholar
Joshi, P. K. & Tyagi, N. K. (1994). Salt affected and water logged soils in India: a review. In Strategic Change in Indian Irrigation (Eds Svendsen, M. & Gulati, A.), pp. 237252. New Delhi, India and Washington, DC: ICAR and IFPRI.Google Scholar
Kendall, M. G. (1975). Rank Correlation Methods. London: Charles Griffin.Google Scholar
Kothawale, D. R. & Rupa Kumar, K. (2005). On the recent changes in surface temperature trends over India. Geophysical Research Letters 32, L18714. doi: 10.1029/2005GL023528.CrossRefGoogle Scholar
Kundzewicz, Z. W. & Robson, A. (2000). Detecting Trend and Other Changes in Hydrological Data. World Climate Program – Water. WCDMP-45, WMO/TD 1013. Geneva: WMO/UNESCO.Google Scholar
Ladha, J. K., Fischer, K. S., Hossain, M., Hobbs, P. R. & Hardy, B. (2000). Improving the Productivity and Sustainability of Rice–wheat Systems of the Indo-Gangetic Plains: A Synthesis of NARS–IRRI Partnership Research. Discussion Paper No. 40. Manila, The Philippines: IRRI.Google Scholar
Ladha, J. K., Dawe, D., Pathak, H., Padre, A. T., Yadav, R. L., Singh, B., Singh, Y., Singh, Y., Singh, P., Kundu, A. L., Sakal, R., Ram, N., Regmi, A. P., Gami, S. K., Bhandari, A. L., Amin, K., Yadav, C. R., Bhattarai, E. M., Das, S., Aggarwal, H. P., Gupta, R. K. & Hobbs, P. R. (2003). How extensive are yield declines in long-term rice–wheat experiments in Asia? Field Crops Research 81, 159180.Google Scholar
Lobell, D. B., Sibley, A. & Ortiz-Monasterio, I. (2012). Extreme heat effects on wheat senescence in India. Nature Climate Change 2, 186189.Google Scholar
Mall, R. K. & Aggarwal, P. K. (2002). Climate change and rice yields in diverse agro-environments of India. I. Evaluation of impact assessment models. Climatic Change 52, 315330.Google Scholar
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica 13, 245259.Google Scholar
Mcquigg, J. D., Thompson, L., Leduc, S., Lockard, M. & Mckay, G. (1973). The Influence of Weather and Climate on United States Grain Yields: Bumper Crops or Drought. Report to the Associate Administrator for Environmental Monitoring and Prediction, NOAA. Washington, DC: US Department of Commerce.Google Scholar
NATCOM (2004). India's Initial National Communication to the United Nations Framework Convention on Climate Change. New Delhi: Ministry of Environment and Forests, Govt. of India.Google Scholar
Nayak, A. K., Gangwar, B., Shukla, A. K., Mazumdar, S. P., Kumar, A., Raja, R., Kumar, A., Kumar, V., Rai, P. K. & Mohan, U. (2012). Long-term effect of different integrated nutrient management on soil organic carbon and its fractions and sustainability of rice–wheat system in Indo-Gangetic Plains of India. Field Crops Research 127, 129139.Google Scholar
Nelson, G. C., Rosegrant, M. W., Koo, J., Robertson, R., Sulser, T., Zhu, T., Ringler, C., Msangi, S., Palazzo, A., Batka, M., Magalhaes, M., Valmonte-Santos, R., Ewing, M. & Lee, D. (2009). Climate Change: Impact on Agriculture and Costs of Adaptation. Washington, DC: IFPRI. Available from: http://www.ifpri.org/publication/climate-change-impact-agriculture-and-costs-adaptation (accessed November 2013).Google Scholar
Paroda, R. S. & Kumar, P. (2000). Food production and demand in South Asia. Agricultural Economics Research Review 13, 124.Google Scholar
Paroda, R. S., Woodhead, T. & Singh, R. B. (1994). Sustainability of Rice–Wheat Production Systems in Asia. RAPA Publication, 1994/11. Bangkok: FAO.Google Scholar
Pathak, H., Ladha, J. K., Aggarwal, P. K., Peng, S., Das, S., Singh, Y., Singh, B., Kamara, S. K., Mishra, B., Sastri, A. S. R. A. S., Aggarwal, H. P., Das, D. K. & Gupta, R. K. (2003). Trends of climatic potential and on-farm yields of rice and wheat in the Indo-Gangetic Plains. Field Crops Research 80, 223234.Google Scholar
Rahman, M. A., Chikushi, J., Yoshida, S. & Karim, A. J. M. S. (2009). Growth and yield components of wheat genotypes exposed to high temperature stress under control environment. Bangladesh Journal of Agricultural Research 34, 361372.Google Scholar
Reddy, B. N. & Babu Sudhakara, S. N. (2003). Sustainability of sunflower-based crop sequences in rainfed Alfisols. Helia 26, 117123.Google Scholar
Revadekar, J. V., Kothawale, D. R., Patwardhan, S. K., Pant, G. B. & Rupa Kumar, K. (2012). About the observed and future changes in temperature extremes over India. Natural Hazards 60, 11331155.Google Scholar
Rupa Kumar, K., Krishna Kumar, K. & Pant, G. B. (1994). Diurnal asymmetry of surface temperature trends over India. Geophysical Research Letters 21, 677680.Google Scholar
Sakamoto, C. M. (1978). The Z-index as a variable for crop yield estimation. Agricultural Meteorology 19, 305313.Google Scholar
Saseendran, S. A., Singh, K. K., Rathore, L. S., Singh, S. V. & Sinha, S. K. (2000). Effects of climate change on rice production in the tropical humid climate of Kerala, India. Climatic Change 44, 495514.Google Scholar
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association 63, 13791389.Google Scholar
Serrano, A., Mateos, V. L. & Garcia, J. A. (1999). Trend analysis for monthly precipitation over the Iberian Peninsula for the period 1921–1995. Physics and Chemistry of the Earth 24, 8590.Google Scholar
Sharma, K. L., Mandal, U. K., Srinivas, K., Vittal, K. P. R., Mandal, B., Grace, J. K. & Ramesh, V. (2005). Long-term soil management effects on crop yields and soil quality in a dryland Alfisol. Soil and Tillage Research 83, 246259.Google Scholar
Singh, R. P., Das, S. K., Bhaskara Rao, U. M. & Narayana Reddy, M. (1990). Sustainability Index under Different Management. Annual Report. Hyderabad, India: Central Research Institute for Dryland Agriculture.Google Scholar
Sinha, S. K., Singh, G. B. & Rai, M. (1998). Decline in Crop Productivity in Haryana and Punjab: Myth or Reality? Report of the Fact Finding Committee, May 1998. New Delhi, India: Indian Council of Agricultural Research.Google Scholar
Sneyers, R. (1990). On the Statistical Analysis of Series of Observations. WMO Technical Note No. 143. Geneva: WMO.Google Scholar
Srinivasarao, CH., Venkateswarlu, B., Lal, R., Singh, A. K., Vittal, K. P. R., Kundu, S., Singh, S. R. & Singh, S. P. (2012 a). Long term effects of soil fertility management on carbon sequestration in a rice–lentil cropping systems of the Indo-Gangetic Plains. Soil Science Society of America Journal 76, 168178.CrossRefGoogle Scholar
Srinivasarao, CH., Venkateswarlu, B., Lal, R., Singh, A. K., Kundu, S., Vittal, K. P. R., Balaguravaiah, G., Vijaya Shankar Babu, M., Chary, G. R., Prasadbabu, M. B. B. & Reddy, T. Y. (2012 b). Soil carbon sequestration and agronomic productivity of an Alfisol for a groundnut based system in a semiarid environment in Southern India. European Journal of Agronomy 43, 4048.Google Scholar
Subash, N. & Ram Mohan, H. S. (2010). Assessment of the influence of monsoon rain on rainy season rice (Oryza sativa) productivity over major rice growing states. Indian Journal of Agricultural Sciences 80, 606615.Google Scholar
Subash, N. & Ram Mohan, H. S. (2011). Trend detection in rainfall and evaluation of standardized precipitation index as a drought assessment index for rice-wheat productivity over IGR in India. International Journal of Climatology 31, 16941709.Google Scholar
Subash, N. & Ram Mohan, H. S. (2012). Evaluation of the impact of climatic trends and variability in rice-wheat system productivity using cropping system model DSSAT over the Indo-Gangetic Plains of India. Agricultural and Forest Meteorology 164, 7181.Google Scholar
Subash, N., Ram Mohan, H. S. & Sikka, A. K. (2011 a). Decadal frequency and trends of extreme excess/deficit rainfall during the monsoon season over different meteorological sub-divisions of India. Hydrological Sciences Journal 56, 10901109.Google Scholar
Subash, N., Sikka, A. K. & Ram Mohan, H. S. (2011 b). An investigation into observational characteristics of rainfall and temperature in Central Northeast India – a historical perspective 1889–2008. Theoretical and Applied Climatology 103, 305319.Google Scholar
Timsina, J. & Connor, D. J. (2001). Productivity and management of rice–wheat cropping systems: issues and challenges. Field Crops Research 69, 93132.Google Scholar
Uzoho, B. U. (2012). Efficiency and sustainability of selected organic manures on a degraded ultisol in Owerri, southeastern Nigeria. International Journal of Agricultural and Rural Development 15, 12231229.Google Scholar
Yadav, R. L., Dwivedi, B. S. & Pandey, P. S. (2000). Rice–wheat cropping system: assessment of sustainability under green manuring and chemical fertilizer inputs. Field Crops Research 65, 1530.Google Scholar
Yadvinder-Singh, Bijay-Singh, Ladha, J. K., Khind, C. S., Gupta, R. K., Meelu, O. P. & Pasuquin, E. (2004). Long-term effects of organic inputs on yield and soil fertility in the rice–wheat rotation. Soil Science Society of America Journal 68, 845853.Google Scholar