Published online by Cambridge University Press: 05 April 2021
Global warming increases the risk of pests and weeds before wintering, and decreases the grain yield of winter wheat. Therefore, the sowing date should be delayed properly. But the variety of winter wheat that can adapt to late sowing remains unclear. Here, we selected two winter wheat cultivars and evaluated four sowing date treatments on 1 October (early sowing), 8 (normal sowing), 15 (late sowing) and 22 (latest sowing) over two wheat-growing seasons at the experimental Station of Shandong Agricultural University (35°96′N, 117°06′E), Daiyue District, Taian, Shandong, China. We examined the effects of sowing date on a few traits, and found that, compared with normal sowing, though spike number decreased, grain yield was maintained above 9300 kg/ha under late and latest sowing. The main reason was that the more accumulated N from jointing to anthesis resulted in a higher grain number per spike. The higher net photosynthetic rate after anthesis, through optimizing N distribution in the canopy and increasing Rubisco content of flag leaves, improved dry matter accumulation rate and contribution ratio of vegetative organs, ultimately, ensured consistent grain weight. The grain yield of high-tillering winter wheat cultivars decreased from 9370 to 8346 kg/ha. The main reason was that spike number, accumulated N from jointing to anthesis and net photosynthetic rate decreased significantly, which reduced the dry matter accumulation rate, and only satisfied less grains to achieve consistent grain weight. Therefore, low-tillering winter wheat cultivars are more adaptable to late sowing, and can reduce the harm of global warming.