Published online by Cambridge University Press: 09 December 2019
Quantifying reasonable crop yield gaps and determining potential regions for yield improvement can facilitate regional plant structure adjustment and promote crop production. The current study attempted to evaluate the yield gap in a region at multi-scales through model simulation and farmer investigation. Taking the winter wheat yield gap in the Huang-Huai-Hai farming region (HFR) for the case study, 241 farmers’ fields in four typical high-yield demonstration areas were surveyed to determine the yield limitation index and attainable yield. In addition, the theoretical and realizable yield gap of winter wheat in 386 counties of the HFR was assessed. Results showed that the average field yield of the demonstration plots was 8282 kg/ha, accounting for 0.72 of the potential yield, which represented the highest production in the region. The HFR consists of seven sub-regions designated 2.1–2.7: the largest attainable yield gap existed in the 2.6 sub-region, in the southwest of the HFR, while the smallest was in the 2.2 sub-region, in the northwest of the HFR. With a high irrigated area rate, the yield gap in the 2.2 sub-region could hardly be reduced by increasing irrigation, while a lack of irrigation remained an important limiting factor for narrowing the yield gap in 2.3 sub-region, in the middle of the HFR. Therefore, a multi-scale yield gap evaluation framework integrated with typical field survey and crop model analysis could provide valuable information for narrowing the yield gap.
These authors contributed equally to this work.