Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T19:38:51.023Z Has data issue: false hasContentIssue false

Proportionality of organ development in osteodystrophic dwarf beef cattle

Published online by Cambridge University Press:  27 March 2009

E. S. E. Hafez
Affiliation:
Department of Animal Science, Washington State University Pullman, Washington
E. H. Rupnow
Affiliation:
Department of Animal Science, Washington State University Pullman, Washington

Extract

Sixteen osteodystrophic dwarf cattle and ten controls of comparable age were slaughtered. The components of the body and eviscerated carcass were weighed and measured. At birth the dwarfs were thick and blocky. At the time of slaughter a bulging forehead was common but not always extreme and not always present. The symptoms of dwarfism became increasingly pronounced with age, due to retarded growth. The dwarfs had shorter thoracic cavity, abdominal cavity, body, loin, hind leg, arm bone and forearm bone than the controls. No explanation can be given for the difference. However, the dwarfs were hydrocephalic and had significantly lighter adrenal and pituitary glands than the control animals. The dwarf animals had more blood, heavier feet, less abdominal fat, smaller loin ‘eye muscle’ area at the 12th rib and a less deep loin ‘eye muscle’. The dwarf females had a lighter rumen (with and without contents) and large intestines (without content) as a percentage of live weight than the controls and dwarf males. There was no difference in palatability of the meat or percentage of wholesale cuts from the dwarf and control animals except for percentage of plate. The following three ratios were disproportionate in the dwarfs as compared with the controls:

Type
Research Article
Copyright
Copyright © Cambridge University Press 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asmundson, V. S. (1944). J. Hered. 35, 295.CrossRefGoogle Scholar
Baker, M. L., Blunn, C. T. & Olouta, M. (1950). J. Hered. 41, 243.CrossRefGoogle Scholar
Becker, R. B., Arnold, P. T., & Dix, (1949). J. Hered. 40, 282.CrossRefGoogle Scholar
Berger, J. & Innes, J. R. M. (1948). Vet. Rec. 60, 57.Google Scholar
Bogart, R. & Dyer, A. J. (1942). J. Anim. Sci. 1, 87.Google Scholar
Grandt, G. W. (1941). J. Hered. 32, 183.CrossRefGoogle Scholar
Burbis, M. J. & Priode, B. M. (1956). J. Hered. 47, 245.Google Scholar
Chang, T. K. (1950). J. Morph. 86, 367.CrossRefGoogle Scholar
Cornelius, C. E., Tyler, W. S. & Gregory, P. W. (1956). Proa. Soc. Exp. Biol., N.Y., and Med. 92, 522.CrossRefGoogle Scholar
Crary, D. C. & Sawin, P. B. (1952). J. Hered. 43, 255.CrossRefGoogle Scholar
Crenshaw, W. W. & Turner, C. W. (1954). J. Anim. Sci. 13, 1017.Google Scholar
Cutler, I. E. (1925). J. Hered. 16, 353.CrossRefGoogle Scholar
Downs, W. G. Jr. (1928). Anat. Rec. 37, 365.CrossRefGoogle Scholar
Dunn, L. C. & Landauer, W. (1926). Amer. Nat. 60, 574.CrossRefGoogle Scholar
Ely, F., Hull, F. E. & Morrison, H. B. (1939). J. Hered. 30, 104.CrossRefGoogle Scholar
Epstein, H. (1953). E. Afr. Agric. J. 18, 123.Google Scholar
Foley, C. W., Massey, J. W. & Lasley, J. F. (1956). J. Anim. Sci. 15, 1217.Google Scholar
Fransen, J. M. & Andrews, F. N. (1958). Amer. J. Vet. Res. 19, 336.Google Scholar
Greene, H. S. N. (1940). J. Exp. Med. 71, 829.Google Scholar
Gregory, P. W., Rollins, W. C., Pattengale, P. S. & Carroll, F. D. (1951). J. Anim. Sci. 10, 922.CrossRefGoogle Scholar
Hafez, E. S. E., Ensminger, M. E. & Ham, W. E. (1959). J. Agric. Sci. 53, 339.CrossRefGoogle Scholar
Johannson, I. (1953). Hereditas, 39, 75.CrossRefGoogle Scholar
Johnson, L. E.Harshfield, G. S. & McCone, W. (1950). J. Hered. 41, 177.CrossRefGoogle Scholar
King, J. W. B. (1950). J. Hered. 41, 249.CrossRefGoogle Scholar
Lambert, W. V. & Sciuchetti, A. M. (1935). J. Hered. 27, 91.CrossRefGoogle Scholar
Landauer, W. (1929). Amer. J. Anat. 43, 1.CrossRefGoogle Scholar
Lush, J. L. (1930). J. Hered. 21, 85.CrossRefGoogle Scholar
Marlowe, T. J. & Chambers, D. (1954). J. Anim. Sci. 13, 961.Google Scholar
Mayhew, R. L. & Upp, C. W. (1932). J. Hered. 23, 269.CrossRefGoogle Scholar
Mead, S. W., Gregory, P. W. & Regan, W. M. (1946). J. Hered. 37, 183.CrossRefGoogle Scholar
Mohr, O. L. & Wriedt, C. (1930). J. Genet. 22, 279.CrossRefGoogle Scholar
Pahnish, O. F., Stanley, E. B., Safley, C. E. & Roubicek, C. B. (1955). Bull. Ariz. Agric. Exp. Sta. No. 268.Google Scholar
Proc. Reciprocal meat Conference (1952). Chicago, III. U.S.A., p. 57.Google Scholar
Selye, H. (1955). Science, 122, 625.CrossRefGoogle Scholar
Smith, P. E. & Macdowell, E. C. (1931). Anat. Rec. 50, 85.CrossRefGoogle Scholar
Snell, G. D. (1929). Nat. Acad. Sci. Proc. 15, 733.CrossRefGoogle Scholar
Sollas, I. B. J. (1914). J. Genetics 3, 201.CrossRefGoogle Scholar
Stockard, C. R. (1928). Anat. Rec. 38, 29.Google Scholar
Sturrarrer, T. C. (1943). J. Hered. 32, 175.CrossRefGoogle Scholar
Wilkens, L. (1953). Bull. N.Y. Acad. Med. 9, 280.Google Scholar
Wriedt, C. & Mohr, O. L. (1928). J. Genet. 20, 187.CrossRefGoogle Scholar