Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T07:46:40.856Z Has data issue: false hasContentIssue false

Red and far-red light influence carbon partitioning, growth and flowering of bahia grass (Paspalum notatum)

Published online by Cambridge University Press:  27 March 2009

F. J. Marousky
Affiliation:
Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA
F. Blondon
Affiliation:
Institut des Sciences Végétales, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France

Summary

Bahia grass (Paspalum notatum Flugge) plants were grown in growth chambers at Gif, France, and at Gainesville in Florida, demonstrating that the species is a long-day plant and greatly influenced by light quality during the photosynthetic period. Flowering occurred in all instances when the middle of the dark period was interrupted with red or red + far-red light. With nightly interruptions of farred light, flowering occurred only when a sufficient quantity of far-red was present during the photosynthetic period. Plants grown under short days with nightly interruptions of red, far-red or red + far-red light had less starch accumulation and greater leaf growth and dry weight than plants grown without nightly light interruptions, whatever the light quality during the photosynthetic period. The treatments did not affect the partitioning of assimilates and flowering in the same way.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergmeyer, H. U., Bernt, E., Schmidt, F. & Stork, H. (1974). D-glucose determination with hexokinase and glucose-6-phosphate dehydrogenase. In Methods of Enzymatic Analysis, Volume 3 (Ed. Bergmeyer, H. U.), pp. 11961201. New York: Academic Press.Google Scholar
Blondon, F. & Jacques, R. (1970). Action de la lumiére sur l'initiation florale du Lolium temulentum L. spectre d'action et rôle du phytochrome. Comptes Rendus de l'Académic des Sciences, Paris 270, 947950.Google Scholar
Blondon, F., Chesneaux, M. T. & Guy, P. (1967). Action de photopériodes et de thermopériodes sur le comportement de deux types extrêmes de luzernes françaises, Medicago saliva L. Comptes Rendus de I'Académic des Sciences, Paris 264, 596598.Google Scholar
Britz, S. J., Hungerford, W. E. & Lee, D. R. (1985). Photoperiodic regulation of photosynthate partitioning in leaves of Digitaria decumbens Stent. Plant Physiology 78, 710714.CrossRefGoogle ScholarPubMed
Burton, G. W. (1989). Registration of‘Tifton 9’ Pensacola bahiagrass. Crop Science 29, 1326.CrossRefGoogle Scholar
Carr-Smith, H. D., Johnson, C. B. & Thomas, B. (1989). Action spectrum for the effect of day-extensions on flowering and apex elongation in green, light-grown wheat (Trilicum aestivum L.). Planta 179, 428432.CrossRefGoogle ScholarPubMed
Deitzer, G. F., Hayes, R. & Jabben, M. (1979). Kinetics and time dependence of the effect of far red light on the photoperiodic induction of flowering in Wintex barley. Plant Physiology 64, 10151021.CrossRefGoogle ScholarPubMed
Friend, D. J. C. (1968). Spectral requirements for flower initiation in two long-day plants, rape (Brassica campestris cv. Ceres) and spring wheat (Triticum × aestivum). Physiologia Plantarum 21, 11851195.CrossRefGoogle Scholar
Furuya, M. (1993). Phytochromes: their molecular species, gene families, and functions. Annual Review of Plant Physiology and Plant Molecular Biolo gy 44, 617645.CrossRefGoogle Scholar
Gifford, R. M. & Evans, L. T. (1981). Photosynthesis, carbon partitioning, and yield. Annual Review of Plant Physiology 32, 485509.CrossRefGoogle Scholar
Hendrix, D. L. & Peelen, K. K. (1987). Artifacts in the analysis of plant tissues for soluble carbohydrates. Crop Science 27, 710715.CrossRefGoogle Scholar
Ison, R. L. & Hopkinson, J. M. (1985). Pasture legumes and grasses of warm climate regions. In CRC Handbook of Flowering, Volume 1 (Ed. Halevy, A. H.), pp. 203251. Boca Raton, Florida: CRC Press.Google Scholar
Jacques, M. & Jacques, R. (1978). Floraison de deux plantes de jours longs: diversité de reponses aux éclairements complémentaires rouge clair et rouge sombre, en fonction de la valeur de l'éclairement trophique. Comptes Rendus de I'Académic des Sciences, Paris 287, 13331336.Google Scholar
Jones, C. A. (1985). C4Grasses and Cereals: Growth, Development, and Stress Response. New York: John Wiley & Sons.Google Scholar
Knight, W. E. & Bennett, H. W. (1953). Preliminary report of the effect of photoperiod and temperature on the flowering and growth of several Southern grasses. Agronomy Journal 45, 268269.CrossRefGoogle Scholar
Nada, Y. (1980). Photoperiodic responses in flowering of main tropical pasture grasses. Journal of Japanese Society of Grassland Science 26, 157164.Google Scholar
Quedado, R. M. & Friend, D. J. C. (1978). Participation of photosynthesis in floral induction of the long day plant Anagallis arvensis L. Plant Physiology 62, 802806.CrossRefGoogle Scholar
Schneider, M. J., Borthwick, H. A. & Hendricks, S. B. (1967). Effects of radiation on flowering of Hyoscyamus niger. American Journal of Botany 54, 12411249.CrossRefGoogle Scholar
Shropshire, W. (1972). Phytochrome, a phytochromic sensor. In Photophysiology: Current Topics in Photobiology and Photochemistry, Volume VII (Ed. Giese, A. C.), pp. 3372. New York: Academic Press.Google Scholar
Thomas, B. (1993). The role of phytochrome and other photoreceptors in the control of flowering in long-day plants. Flowering Newsletter 16, 610.Google Scholar
Vince, D., Blake, J. & Spencer, R. (1964). Some effects of wave-length of the supplementary light on the photoperiodic behaviour of the long-day plants, carnation and lettuce. Physiologia Plantarum 17, 119125.CrossRefGoogle Scholar
Vince-Prue, D. (1975). Photoperiodism in Plants (Ed. Vince-Prue, D.). London: McGraw-Hill.Google Scholar
Vince-Prue, D. (1979). Effect of photoperiod and phytochrome in flowering: time measurement. In La Physiologic de la Floraison (Eds Champagnat, P. & Jacques, R.), pp. 91127. Paris: Centre National de la Recherche Scientifique.Google Scholar