Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-16T07:03:49.413Z Has data issue: false hasContentIssue false

Studies on the muscles of meat animals I. Differences in composition of beef longissimus dorsi muscles determined by age and anatomical location

Published online by Cambridge University Press:  27 March 2009

R. A. Lawrie
Affiliation:
Low Temperature Research Station, Cambridge

Extract

1. The longissimus dorsi muscles of cattle have been analysed for moisture, intramuscular fat (and its iodine number), nitrogen (total, myofibrillar, sarcoplasmic, soluble non-protein and stroma), myoglobin, total soluble phosphorus and ash; ultimate pH and buffering power were also determined.

2. At birth, in the region of the 4th, 5th and 6th lumbar vertebrae, total, myofibrillar, sarcoplasmic and soluble non-protein nitrogens have attained 87, 76, 71 and 25% of their mean adult values, respectively; the concentration of stroma nitrogen diminishes by 50%, between birth and maturity.

3. The mean adult values (fat-free basis) for sarcoplasmic (0·9%) and myofibrillar (1·9%) protein nitrogen, for total nitrogen (3·6%) and for moisture (76·8%) are atained at approximately 5 months, 7–10 months and 18 months of age, respectively; moisture on a whole tissue basis decreases fairly regularly as intramuscular fat increases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, R. J. L. (1940). Biochem. J. 34, 858.CrossRefGoogle Scholar
Bate-Smith, E. C. (1948). J. Soc. Chem. Ind., Lond., 67, 83.CrossRefGoogle Scholar
Bennett, H. S. (1955). Amer. J. Phys. Med. 34, 46.Google Scholar
Biörck, G. (1949). Acta med. Scand. (Suppl.) 133, 226.Google Scholar
Briskey, E. J., Hoekstra, W. G., Bray, B. W. & Grummer, R. H. (1960). J. Anim. Sci. 19, 214.Google Scholar
Brody, S. (1945). Bioenergetics and Growth. New York: Beinhold.Google Scholar
Callow, E. H. (1935). Annu. Rep. Fd Invest. Bd, Lond., p. 43.Google Scholar
Callow, E. H. (1938). Annu. Sep. Fd Invest. Bd, Lond., p. 45.Google Scholar
Callow, E. H. (1944). J. Agric. Sci. 34, 177.Google Scholar
Callow, E. H. (1947). J. Agric. Sci. 37, 113.Google Scholar
Callow, E. H. (1948). J. Agric. Sci. 38, 174.Google Scholar
Callow, E. H. (1949). J. Agric. Sci. 39, 347.CrossRefGoogle Scholar
Callow, E. H. (1950). J. Agric. Sci. 40, 1.CrossRefGoogle Scholar
Callow, E. H. & Searle, R. L. (1956). J. Agric. Sci. 48, 61.CrossRefGoogle Scholar
Clelland, K. W. & Slater, E. C. (1953). Biochem. J. 53, 547.Google Scholar
Dickerson, J. W. T. & Widdowson, E. M. (1960). Biochem. J. 74, 247.CrossRefGoogle Scholar
Folley, S. J. & French, T. H. (1948). Biochem. J. 43, Proc. lv.Google Scholar
Hammond, J. (1932). Growth and Development of Mutton Qualities in the Sheep. London: Oliver and Boyd.Google Scholar
Hammond, J. (1935). Emp. J. Exp. Agric. 3, 9.Google Scholar
Helander, E. (1957). Acta physiol. Scand. (Suppl.) 41, 141.Google Scholar
Howard, A. & Lawrie, R. A. (1956). Spec. Rep. Fd Invest. Bd, Lond., no. 63.Google Scholar
Howard, A. & Lawrie, R. A. (1957). Spec. Rep. Fd Invest. Bd, Lond., no. 65.Google Scholar
Joubert, D. M. (1956). J. Agric. Sci. 47, 59.Google Scholar
Lawrie, R. A. (1950). J. Agric. Sci. 40, 356.Google Scholar
Lawrie, R. A. (1953 a). J. Physiol. 121, 275.Google Scholar
Lawrie, R. A. (1953 b). Biochem. J. 55, 298.Google Scholar
Lawrie, R. A. (1953 c). Biochem. J. 55, 305.Google Scholar
Lawrie, R. A. (1960 a). Brit. J. Nutr. 14, 255.CrossRefGoogle Scholar
Lawrie, R. A. (1960 b). J. Comp. Path. 70, 273.CrossRefGoogle Scholar
Ludvigsen, J. (1954). Beretn. Forsegslab., Kbh., no. 272.Google Scholar
Ludvigsen, J. (1955). Beretn. Forsegslab., Kbh., nos. 278, 279, 282.Google Scholar
McMeekan, C. P. (1940). J. Agric. Sci. 30, 276, 387, 511.CrossRefGoogle Scholar
McMeekan, C. P. (1941). J. Agric. Sci. 31, 1.Google Scholar
Needham, J. (1931). Chemical Embryology, vol. III, p. 1574. Cambridge University Press.Google Scholar
Pálsson, H. (1939). J. Agric. Sci. 29, 544.Google Scholar
Pálsson, H. (1940). J. Agric. Sci. 30, 1.Google Scholar
Pálsson, H. (1955). Progress in the Physiology of Farm Animals. Ed. Hammond, J., vol. II, p. 430. London: Butterworth.Google Scholar
Pálsson, H. & Verges, J. B. (1952). J. Agric. Sci. 42, 1, 93.CrossRefGoogle Scholar
Paul, M. H. & Sperling, E. (1952). Proc. Soc. Exp. Biol. N.Y., 79, 352.CrossRefGoogle Scholar
Pennington, R. J. (1952). Biochem. J. 51, 251.Google Scholar
Scaife, J. (1955). J. Sci. Fd Agric. 6, 467.Google Scholar
Walls, E. W. (1960). The Structure and Function of Muscle. Ed. Bourne, G. H., vol. 1, p. 21. New York: Acad. Press.Google Scholar
Wierbicki, E., Kunkle, L. E., Cahill, V. R. & Deatherage, F. E. (1954). Food Tech. 8, 506.Google Scholar
Wierbicki, E., Kunkle, L. E., Cahill, V. R. & Deathbrage, F. E. (1956). Food Tech. 10, 80.Google Scholar
Wismer-Pedersen, J. (1959). Food Res. 24, 711.CrossRefGoogle Scholar