Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T17:00:35.067Z Has data issue: false hasContentIssue false

Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture

Published online by Cambridge University Press:  01 April 1999

L. A. DURRANT
Affiliation:
Connective Tissue Biology Laboratory, Cardiff School of Biosciences, Cardiff University, UK
C. W. ARCHER
Affiliation:
Connective Tissue Biology Laboratory, Cardiff School of Biosciences, Cardiff University, UK
M. BENJAMIN
Affiliation:
Connective Tissue Biology Laboratory, Cardiff School of Biosciences, Cardiff University, UK
J. R. RALPHS
Affiliation:
Connective Tissue Biology Laboratory, Cardiff School of Biosciences, Cardiff University, UK
Get access

Abstract

Articular cartilage undergoes cycles of compressive loading during joint movement, leading to its cyclical deformation and recovery. This loading is essential for chondrocytes to perform their normal function of maintenance of the extracellular matrix. Various lines of evidence suggest the involvement of the cytoskeleton in load sensing and response. The purpose of the present study is to describe the 3-dimensional (3D) architecture of the cytoskeleton of chondrocytes within their extracellular matrix, and to examine cytoskeletal responses to experimentally varied mechanical conditions. Uniformly sized explants of articular cartilage were dissected from adult rat femoral heads. Some were immediately frozen, cryosectioned and labelled for filamentous actin using phalloidin, and for the focal contact component vinculin or for vimentin by indirect immunofluorescence. Sections were examined by confocal microscopy and 3D modelling. Actin occurred in all chondrocytes, appearing as bright foci at the cell surface linked to an irregular network beneath the surface. Cell surface foci colocalised with vinculin, suggesting the presence of focal contacts between the chondrocyte and its pericellular matrix. Vimentin label occurred mainly in cells of the deep zone. It had a complex intracellular distribution, with linked networks of fibres surrounding the nucleus and beneath the plasma membrane. When cartilage explants were placed into organ culture, where in the absence of further treatments cartilage imbibes fluid from the culture medium and swells, cytoskeletal changes were observed. After 1 h in culture the vimentin cytoskeleton was disassembled, leading to diffuse labelling of cells. After a further hour in culture filamentous vimentin label reappeared in deep zone chondrocytes, and then over the next 48 h became more widespread in cells of the explants. Actin distribution was unaffected by culture. Further experiments were performed to test the effects of load on the cytoskeleton. Explants were placed in culture and immediately subjected to static uniaxial radially unconfined compressive loads of 0.5, 1, 2 or 4 MPa for 1 h using a pneumatic loading device. Loads greater than 0.5 MPa maintained the vimentin organisation over the culture period. At 0.5 MPa, the chondrocytes within the explant behaved as in free-swelling culture. The rapid change in vimentin organisation probably relates to rapid swelling of the explants—under free-swelling conditions, these reached their maximum swollen size in just 15 min of culture. The chondrocytes' response to change in tissue dimensions, and thus to their relationship to their immediate environment, was to disassemble their vimentin networks. Loading probably counteracts the swelling pressure of the tissue. Overall, this work suggests that chondrocytes maintain their actin cytoskeleton and modify their vimentin cytoskeleton in response to changing mechanical conditions.

Type
Research Article
Copyright
© Anatomical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)