Published online by Cambridge University Press: 14 July 2016
The usual concept of asymptotic independence, as discussed in the context of extreme value theory, requires the distribution of the coordinatewise sample maxima under suitable centering and scaling to converge to a product measure. However, this definition is too broad to conclude anything interesting about the tail behavior of the product of two random variables that are asymptotically independent. Here we introduce a new concept of asymptotic independence which allows us to study the tail behavior of products. We carefully discuss equivalent formulations of asymptotic independence. We then use the concept in the study of a network traffic model. The usual infinite source Poisson network model assumes that sources begin data transmissions at Poisson time points and continue for random lengths of time. It is assumed that the data transmissions proceed at a constant, nonrandom rate over the entire length of the transmission. However, analysis of network data suggests that the transmission rate is also random with a regularly varying tail. So, we modify the usual model to allow transmission sources to transmit at a random rate over the length of the transmission. We assume that the rate and the time have finite mean, infinite variance and possess asymptotic independence, as defined in the paper. We finally prove a limit theorem for the input process showing that the centered cumulative process under a suitable scaling converges to a totally skewed stable Lévy motion in the sense of finite-dimensional distributions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.