Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T05:39:03.935Z Has data issue: false hasContentIssue false

Asymptotic properties and equilibrium conditions for branching Poisson processes

Published online by Cambridge University Press:  14 July 2016

P.A.W. Lewis*
Affiliation:
IBM Research Center, New York

Abstract

Some previously obtained asymptotic results for branching Poisson processes are extended and sharpened. It is shown that under rather general conditions the number of events in both the transient and the equilibrium processes, suitably normalized, have a unit normal distribution. Finally, unique initial conditions are derived for the equilibrium process.

Type
Research Papers
Copyright
Copyright © Sheffield: Applied Probability Trust 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartlett, M. S. (1963) The spectral analysis of point processes. J. R. Statist. Soc. B 25, 264296.Google Scholar
Cox, D. R. (1962) Renewal Theory. Methuen, London.Google Scholar
Feller, W. (1957) An Introduction to Probability Theory and its Applications. Vol. I, 2nd ed. Wiley, New York.Google Scholar
Feller, W. (1966) An Introduction to Probability Theory and its Applications. Vol. II. Wiley, New York.Google Scholar
Franken, P., Liemant, A. and Matthes, K. (1965) Stationäre zufällige Punktfolgen III. Jahresbericht der DMV 67, 183202.Google Scholar
Franken, F. and Richter, G. (1965) Über eine Klasse von zufälligen Punktfolgen. Wiss. Z. Friedrich-Schiller-Univ., Jena, Math. Naturwiss., Reihe 14, 247249.Google Scholar
Kerstan, J. and Matthes, K. (1964) Stationäre zufällige Punktfolgen II. Jahresbericht der DMV 66, 106118.Google Scholar
Lewis, P. A. W. (1963) Discussion of paper by M. S. Bartlett. J. R. Statist. Soc. B 25, 292294.Google Scholar
Lewis, P. A. W. (1964a) A branching Poisson process model for the analysis of computer failure patterns. J. R. Statist. Soc. B 26, 398456.Google Scholar
Lewis, P. A. W. (1964b) Implications of a failure model for the use and maintenance of computers. J. Appl. Prob. 1, 347368.CrossRefGoogle Scholar
Lewis, P. A. W. (1967) Non-homogeneous branching Poisson processes. J. R. Statist. Soc. B 29, 343354.Google Scholar
Philipson, C. (1966) Lewis' branching Poisson process model from the point of view of the theory of compound Poisson processes. Skand. Aktuartidskr. 183198.Google Scholar
Smith, W. L. (1955) Regenerative stochastic processes. Proc. Roy. Soc. A 232, 631.Google Scholar
Smith, W. L. (1964) Discussion of paper by P. A. W. Lewis. J. R. Statist. Soc. B 26, 446448.Google Scholar
Takács, L. (1962) Introduction to the Theory of Queues. Oxford Univ. Press, New York.Google Scholar