Published online by Cambridge University Press: 14 July 2016
The estimation problem is studied for a new two-parameter family of life length distributions which has been previously derived from a model of fatigue crack growth. Maximum likelihood estimates of both parameters are obtained and iterative computing procedures are given and examined. A simple estimate of the median life is exhibited, shown to be consistent and then compared, favorably, with the maximum likelihood estimate. More important, the asymptotic distribution of this estimate is shown to be within the same class of distributions as the observations themselves. This model, and these estimation procedures, are tried by fitting this distribution to several extensive sets of fatigue data and then some comparisons of practical significance are made.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.