Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T23:02:40.013Z Has data issue: false hasContentIssue false

Limit theorems for a supercritical Poisson random indexed branching process

Published online by Cambridge University Press:  24 March 2016

Zhenlong Gao*
Affiliation:
School of Statistics, Qufu Normal University, Qufu 273165, P. R. China.
Yanhua Zhang
Affiliation:
School of Statistics, Qufu Normal University, Qufu 273165, P. R. China.
*
** Email address: gaozhenlong0325@163.com

Abstract

Let {Zn, n = 0, 1, 2, . . .} be a supercritical branching process, {Nt, t ≥ 0} be a Poisson process independent of {Zn, n = 0, 1, 2, . . .}, then {ZNt, t ≥ 0} is a supercritical Poisson random indexed branching process. We show a law of large numbers, central limit theorem, and large and moderate deviation principles for log ZNt.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Athreya, K. B. (1994). Large deviation rates for branching processes. I. Single type case. Ann. Appl. Prob. 4, 779790. CrossRefGoogle Scholar
[2]Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd edn. Springer, New York. CrossRefGoogle Scholar
[3]Dion, J. P. and Epps, T. W. (1999). Stock prices as branching processes in random environments: estimation. Commun. Statist. Simul. Comput. 28, 957975. CrossRefGoogle Scholar
[4]Epps, T. W. (1996). Stock prices as branching processes. Commun. Statist. Stoch. Models 12, 529558. CrossRefGoogle Scholar
[5]Fleischmann, K. and Wachtel, V. (2008). Large deviations for sums indexed by the generations of a Galton–Watson process. Prob. Theory Relat. Fields 141, 445470. CrossRefGoogle Scholar
[6]Huang, C. and Liu, Q. (2012). Moments, moderate and large deviations for a branching process in a random environment. Stoch. Process. Appl. 122, 522545. CrossRefGoogle Scholar
[7]Mitov, G. and Mitov, K. (2007). Option pricing by branching process. Pliska Stud. Math. Bulgar. 18, 213224. Google Scholar
[8]Mitov, G. K., Mitov, K. V. and Yanev, N. M. (2009). Critical randomly indexed branching processes. Statist. Prob. Lett. 79, 15121521. CrossRefGoogle Scholar
[9]Mitov, G. K., Rachev, S. T., Kim, Y. S. and Fabozzi, F. J. (2009). Barrier option pricing by branching processes. Internat. J. Theoret. Appl. Finance 12, 10551073. CrossRefGoogle Scholar
[10]Mitov, K. V. and Mitov, G. K. (2011). Subcritical randomly indexed branching processes. Pliska Stud. Math. Bulgar. 20, 155168. Google Scholar
[11]Mitov, K. V., Mitov, G. K. and Yanev, N. M. (2010). Limit theorems for critical randomly indexed branching processes. In Workshop on Branching Processes and Their Applications (Lecture Notes Statist. Proc. 197), Springer, Berlin, pp. 95108. CrossRefGoogle Scholar
[12]Williams, T. A. (2001). Option pricing and branching processes. Doctoral thesis. University of Virginia. Google Scholar
[13]Wu, S.-J. (2012). Large deviation results for a randomly indexed branching process with applications to finance and physics. Doctoral thesis. North Carolina State University. Google Scholar