Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T21:18:44.722Z Has data issue: false hasContentIssue false

Note an a death process

Published online by Cambridge University Press:  14 July 2016

S. A. De Vries*
Affiliation:
Rijksuniversiteit Groningen
A. J. Stam*
Affiliation:
Rijksuniversiteit Groningen
J. Reddingius*
Affiliation:
Rijksuniversiteit Groningen
*
Postal address: Mathematisch Instituut, Rijksuniversiteit Groningen, Postbus 800, Groningen, The Netherlands.
Postal address: Mathematisch Instituut, Rijksuniversiteit Groningen, Postbus 800, Groningen, The Netherlands.
Postal address: Mathematisch Instituut, Rijksuniversiteit Groningen, Postbus 800, Groningen, The Netherlands.

Abstract

The forward equations for the death process in ℕ2 with Q-matrix determined by q(i, j; i − 1, j) = αij, i ≧ 1, q(i, j; i, j − 1) = μj, j ≧ 1 are solved by giving a special interpretation to this Q-matrix.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 1980 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Billard, L. (1977) On Lotka–Volterra predator-prey models. J. Appl. Prob. 14, 375381.CrossRefGoogle Scholar
Billard, L., Lacayo, H. and Langberg, N. A. (1979) The symmetric m-dimensional simple epidemic process. J. R. Statist. Soc. B 41, 196202.Google Scholar
De Vries, S. A. (1978) A stochastic model for a prey population attacked by a predator population which is subject to a death process. Report TW-197, Mathematisch Instituut, Rijksuniversiteit Groningen.Google Scholar
Nicholson, A. J. and Bailey, V. A. (1935) The balance of animal populations. Proc. Zool. Soc. Lond. II, 551598.Google Scholar
Reddingius, J. (1975) Models and statistics in population ecology. In Proc. 8th Internat. Biometric Conference , ed. Corsten, L. C. A. and Postelnicu, T., Acad. Republ. Soc. România, Bucharest, 287300.Google Scholar
Severo, N. C. (1969) A recursion theorem on solving differential-difference equations and application to some stochastic processes. J. Appl. Prob. 6, 673681.Google Scholar