Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T15:42:48.559Z Has data issue: false hasContentIssue false

Small-Time smile for the multifactor volatility heston model

Published online by Cambridge University Press:  23 November 2020

Dohyun Ahn*
Affiliation:
The Chinese University of Hong Kong
Kyoung-Kuk Kim*
Affiliation:
Korea Advanced Institute of Science and Technology
Younghoon Kim*
Affiliation:
University of North Carolina at Chapel Hill
*
*Postal address: Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
**Postal address: Department of Industrial and Systems Engineering, KAIST, Daejeon, South Korea. Email address: kkim3128@kaist.ac.kr
***Postal address: Department of Statistics & Operations Research, University of North Carolina, Chapel Hill, NC, USA

Abstract

We extend the existing small-time asymptotics for implied volatilities under the Heston stochastic volatility model to the multifactor volatility Heston model, which is also known as the Wishart multidimensional stochastic volatility model (WMSV). More explicitly, we show that the approaches taken in Forde and Jacquier (2009) and Forde, Jacqiuer and Lee (2012) are applicable to the WMSV model under mild conditions, and obtain explicit small-time expansions of implied volatilities.

Type
Research Papers
Copyright
© Applied Probability Trust 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benabid, A., Bensusan, H. and El Karoui, N. (2010). Wishart stochastic volatility: Asymptotic smile and numerical framework. Working Paper.Google Scholar
Carr, P. and Madan, D. (1999). Option valuation using the fast Fourier transform. J. Comput. Finance 2, 6173.10.21314/JCF.1999.043CrossRefGoogle Scholar
Choi, C. H. (1990). A survey of numerical methods for solving matrix Riccati differential equations. IEEE Proc. Southeastcon, Vol. 2, IEEE, New York, pp. 696700.10.1109/SECON.1990.117906CrossRefGoogle Scholar
Christoffersen, P., Heston, S. and Jacobs, K. (2009). The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well. Manag. Sci. 55, 19141932.10.1287/mnsc.1090.1065CrossRefGoogle Scholar
Da Fonseca, J. (2016). On moment non-explosions for Wishart-based stochastic volatility models. Europ. J. Operat. Res. 254, 889894.10.1016/j.ejor.2016.04.042CrossRefGoogle Scholar
Da Fonseca, J., Gnoatto, A. and Grasselli, M. (2015). Analytic pricing of volatility-equity options within Wishart-based stochastic volatility models. Operat. Res. Lett. 43, 601607.Google Scholar
Da Fonseca, J. and Grasselli, M. (2011). Riding on the smiles. Quant. Finance 11, 16091632.10.1080/14697688.2011.615218CrossRefGoogle Scholar
Da Fonseca, J., Grasselli, M. and Tebaldi, C. (2008). A multifactor volatility Heston model. Quant. Finance 8, 5918604.10.1080/14697680701668418CrossRefGoogle Scholar
Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd edn. Springer, New York.Google Scholar
Duffie, D., Pan, J. and Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 13431376.10.1111/1468-0262.00164CrossRefGoogle Scholar
Forde, M. and Jacquier, A. (2009). Small-time asymptotics for implied volatility under the Heston model. Internat. J. Theoret. Appl. Finance 12, 861876.10.1142/S021902490900549XCrossRefGoogle Scholar
Forde, M. and Jacquier, A. (2011). The large-maturity smile for the Heston model. Finance Stoch. 15, 755780.10.1007/s00780-010-0147-3CrossRefGoogle Scholar
Forde, M., Jacquier, A. and Lee, R. (2012). The small-time smile and term structure of implied volatility under the Heston Model. SIAM J. Financial Math. 3, 690708.10.1137/110830241CrossRefGoogle Scholar
Forde, M., Jacquier, A. and Mijatović, A. (2011). A note on essential smoothness in the Heston model. Finance Stoch. 15, 781784.10.1007/s00780-011-0162-zCrossRefGoogle Scholar
Fouque, J. P., Papanicolaou, G., Sircar, R. and Solna, K. (2003). Singular perturbations in option pricing. SIAM J. Appl. Math. 63, 16481665.10.1137/S0036139902401550CrossRefGoogle Scholar
Fouque, J. P., Papanicolaou, G., Sircar, R. and Solna, K. (2003). Multiscale stochastic volatility asymptotics. Multiscale Model. Sim. 2, 2242.Google Scholar
Gauthier, P. and Possamai, D. (2009). Prices expansions in the Wishart model. IUP J. Comput. Math. 4, 4471.Google Scholar
Gnoatto, M. and Grasselli, M. (2014). The explicit Laplace transform for the Wishart process. J. Appl. Prob. 51, 640656.10.1239/jap/1409932664CrossRefGoogle Scholar
Gourieroux, C. and Sufana, R. (2010). Derivative pricing with Wishart multivariate stochastic volatility. J. Business Econom. Statist. 28, 438451.10.1198/jbes.2009.08105CrossRefGoogle Scholar
Grasselli, M. and Tebaldi, C. (2008). Solvable affine term structure models. Math. Finance 18, 135153.10.1111/j.1467-9965.2007.00325.xCrossRefGoogle Scholar
Gruber, P., Tebaldi, C. and Trojani, F. (2010). Three make a smile: Dynamic volatility, skewness and term structure components in option valuation. Working Paper.Google Scholar
Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Studies 6, 327343.10.1093/rfs/6.2.327CrossRefGoogle Scholar
Keller-Ressel, M. and Mayerhofer, E. (2015). Exponential moments of affine processes. Ann. Appl. Prob. 25, 714752.10.1214/14-AAP1009CrossRefGoogle Scholar
Lee, R. (2004). The moment formula for implied volatility at extreme strikes. Math. Finance 14, 469480.10.1111/j.0960-1627.2004.00200.xCrossRefGoogle Scholar
Olver, F. W. (1974). Asymptotics and Special Functions. Academic Press, New York.Google Scholar
Reid, W. T. (1972). Riccati Differential Equations. Academic Press, New York.Google Scholar
Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press.Google Scholar