Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T19:46:52.779Z Has data issue: false hasContentIssue false

Un théorème d'unicité pour les hyperplans poissoniens

Published online by Cambridge University Press:  14 July 2016

G. Matheron*
Affiliation:
Centre de Morphologie Mathématique, Fontainebleau

Abstract

A stationary Poisson process of hyperplanes in Rn is characterized (up to an equivalence) by the function θ such that θ(s) is the density of the Poisson point process induced on the straight lines with direction s. The set of these functions θ is a convex cone ℛ1, a basis of which is a simplex Θ, and a given function θ belongs to ℛ1 if and only if it is the supporting function of a symmetrical compact convex set which is a finite Minkowski sum of line segments or the limit of such finite sums. Another application is given concerning the tangential cone at h = 0 of a coveriance function.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 1974 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

[1] Alfsen, E. M. (1971) Compact Convex Sets and Boundary Integrals. Springer, Berlin.CrossRefGoogle Scholar
[2] Choquet, G. (1960) Le théorème de représentation intégrale dans les ensembles convexes compacts Ann. Inst. Fourier 10, 333444.CrossRefGoogle Scholar
[3] Guelfand, I. M. Et Villenkin, Y. (1961) Nekotorye Primenienia Garmonitcheskovo Analisa. Gos. Iz. Phys. Mat. Lit., Moscou.Google Scholar
[4] Guelfand, I. M. Et Villenkin, Y. (1967) Les Distributions, Tome 4. Dunod, Paris.Google Scholar
[5] Landkof, N. S. (1966) Osnovy Sovermennoï Teorrii Potentziala. Izd. Nauka, Moscou.Google Scholar
[6] Matheron, G. Ensembles aléatoires, ensembles semi-markoviens et polyèdres poissoniens. Adv. Appl. Prob. 4, 508541.CrossRefGoogle Scholar