Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T22:04:48.732Z Has data issue: false hasContentIssue false

Alternating branching processes

Published online by Cambridge University Press:  14 July 2016

Penka Mayster*
Affiliation:
University of Tunis
*
Postal address: Institut Supérieur des Etudes Technologiques de Radès, Rue Jérusalem-Radès, B.P. 172, Radès Médina 2098, Tunisia. Email address: penka.mayster@isetr.rnu.tn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce the idea of controlling branching processes by means of another branching process, using the fractional thinning operator of Steutel and van Harn. This idea is then adapted to the model of alternating branching, where two Markov branching processes act alternately at random observation and treatment times. We study the extinction probability and limit theorems for reproduction by n cycles, as n → ∞.

Type
Research Papers
Copyright
© Applied Probability Trust 2005 

References

Aly, E.-E. A. and Bouzar, N. (1994). Explicit stationary distributions for some Galton–Watson processes with immigration. Commun. Statist. Stoch. Models 10, 499517.CrossRefGoogle Scholar
Athreya, K. B. and Karlin, S. (1971). On branching processes with random environments. I. Extinction probabilities. Ann. Math. Statist. 42, 14991520.CrossRefGoogle Scholar
Athreya, K. B. and Karlin, S. (1971). Branching processes with random environments. II. Limit theorems. Ann. Math. Statist. 42, 18431858.CrossRefGoogle Scholar
Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, Berlin.CrossRefGoogle Scholar
Borovkov, A. A. et al. (2004). On the 80th birthday of B. A. Sevastyanov. Theory Prob. Appl. 48, 697702.Google Scholar
Del Puerto, I. M. and Yanev, N. M. (2004). Branching processes with multi-type random control functions. C. R. Acad. Bulgare Sci. 57, 2936.Google Scholar
Gonzàlez, M., Molina, M. and Del Puerto, I. (2002). On the class of controlled branching processes with random control functions. J. Appl. Prob. 39, 804815.CrossRefGoogle Scholar
Gonzàlez, M., Molina, M. and Del Puerto, I. (2003). On the geometric growth in controlled branching processes with random control functions. J. Appl. Prob. 40, 9951006.CrossRefGoogle Scholar
Gonzàlez, M., Molina, M. and Del Puerto, I. (2004). Limiting distribution for subcritical controlled branching processes with random control functions. Statist. Prob. Lett. 67, 277284.CrossRefGoogle Scholar
Gonzàlez, M., Molina, M. and Del Puerto, I. (2005). On L_2-convergence of controlled branching processes with random control functions. Bernoulli 11, 3746.CrossRefGoogle Scholar
Klimov, G. P. (1983). Theory of Probability and Mathematical Statistics. Moscow State University Press (in Russian).Google Scholar
McDonald, D. (1978). On semi-Markov and semi-regenerative processes. II. Ann. Prob. 6, 9951015.CrossRefGoogle Scholar
Pakes, A. G. (1995). Characterisation of discrete laws via mixed sums and Markov branching processes. Stoch. Process. Appl. 55, 285300.CrossRefGoogle Scholar
Sevastyanov, B. A. (1971). Branching Processes. Nauka, Moscow.Google Scholar
Sevastyanov, B. A. and Zubkov, A. M. (1974). Controlled branching processes. Theory Prob. Appl. 19, 1424.CrossRefGoogle Scholar
Smith, W. L. and Wilkinson, W. E. (1969). On branching processes in random environments. Ann. Math. Statist. 40, 814827.CrossRefGoogle Scholar
Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Ann. Prob. 7, 893899.CrossRefGoogle Scholar
Van Harn, K. and Steutel, F. W. (1993). Stability equations for processes with stationary independent increments using branching processes and Poisson mixtures. Stoch. Process. Appl. 45, 209230.CrossRefGoogle Scholar
Yanev, N. M. (1976). Conditions for degeneracy of φ-branching processes with random φ. Theory Prob. Appl. 20, 421428.CrossRefGoogle Scholar