Article contents
An epidemic model with exposure-dependent severities
Published online by Cambridge University Press: 14 July 2016
Abstract
We consider a stochastic model for the spread of a susceptible–infective–removed (SIR) epidemic among a closed, finite population, in which there are two types of severity of infectious individuals, namely mild and severe. The type of severity depends on the amount of infectious exposure an individual receives, in that infectives are always initially mild but may become severe if additionally exposed. Large-population properties of the model are derived. In particular, a coupling argument is used to provide a rigorous branching process approximation to the early stages of an epidemic, and an embedding argument is used to derive a strong law and an associated central limit theorem for the final outcome of an epidemic in the event of a major outbreak. The basic reproduction number, which determines whether or not a major outbreak can occur given few initial infectives, depends only on parameters of the mild infectious state, whereas the final outcome in the event of a major outbreak depends also on parameters of the severe state. Moreover, the limiting final size proportions need not even be continuous in the model parameters.
Keywords
MSC classification
- Type
- Research Papers
- Information
- Copyright
- © Applied Probability Trust 2005
References
- 14
- Cited by