Article contents
Asymptotic behavior of Hill's estimate and applications
Published online by Cambridge University Press: 24 August 2016
Abstract
The problem of estimating the exponent of a stable law is receiving an increasing amount of attention because Pareto's law (or Zipf's law) describes many biological phenomena very well (see e.g. Hill (1974)). This problem was first solved by Hill (1975), who proposed an estimate, and the convergence of that estimate to some positive and finite number was shown to be a characteristic of distribution functions belonging to the Fréchet domain of attraction (Mason (1982)). As a contribution to a complete theory of inference for the upper tail of a general distribution function, we give the asymptotic behavior (weak and strong) of Hill's estimate when the associated distribution function belongs to the Gumbel domain of attraction. Examples, applications and simulations are given.
Keywords
- Type
- Research Paper
- Information
- Copyright
- Copyright © Applied Probability Trust 1986
References
- 5
- Cited by