Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T16:18:22.599Z Has data issue: false hasContentIssue false

Asymptotic behaviour near extinction of continuous-state branching processes

Published online by Cambridge University Press:  21 June 2016

Gabriel Berzunza*
Affiliation:
Universität Zürich
Juan Carlos Pardo*
Affiliation:
Centro de Investigación en Matemáticas
*
* Postal address: Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. Email address: gabriel.berzunza@math.uzh.ch
** Postal address: Centro de Investigación en Matemáticas, A.C. Calle Jalisco s/n, 36240 Guanajuato, México. Email address: jcpardo@cimat.mx

Abstract

In this paper we study the asymptotic behaviour near extinction of (sub-)critical continuous-state branching processes. In particular, we establish an analogue of Khintchine's law of the iterated logarithm near extinction time for a continuous-state branching process whose branching mechanism satisfies a given condition.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bertoin, J. (1996).Lévy Processes.Cambridge University Press.Google Scholar
[2]Bingham, N. H. (1976).Continuous branching processes and spectral positivity.Stoch. Process. Appl. 4, 217242.Google Scholar
[3]Duquesne, T. (2012).The exact packing measure of Lévy trees.Stoch. Process. Appl. 122, 9681002.CrossRefGoogle Scholar
[4]Grey, D. R. (1974).Asymptotic behaviour of continuous-time, continuous state-space branching processes.J. Appl. Prob. 11, 669677.Google Scholar
[5]Grimvall, A. (1974).On the convergence of sequences of branching processes.Ann. Prob. 2, 10271045.CrossRefGoogle Scholar
[6]Jiřina, M. (1958).Stochastic branching processes with continuous state space.Czech. Math. J. 8, 292313.Google Scholar
[7]Kyprianou, A. E. and Pardo, J. C. (2008).Continuous-state branching processes and self-similarity.J. Appl. Prob. 45, 11401160.Google Scholar
[8]Lamperti, J. (1967).Continuous state branching processes.Bull. Amer. Math. Soc. 73, 382386.Google Scholar
[9]Pardo, J. C. (2008).On the rate of growth of Lévy processes with no positive jumps conditioned to stay positive.Electron. Commun. Prob. 13, 494506.Google Scholar
[10]Silverstein, M. L. (1968).A new approach to local times.J. Math. Mech. 17, 10231054.Google Scholar