Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T09:12:50.507Z Has data issue: false hasContentIssue false

Asymptotics of Posteriors for Binary Branching Processes

Published online by Cambridge University Press:  14 July 2016

Didier Piau*
Affiliation:
Université Joseph Fourier
*
Postal address: Institut Fourier UMR 5582, Université Joseph Fourier Grenoble 1, 100 rue des Maths, BP 74, 38402 Saint Martin d'Hères, France. Email address: didier.piau@ujf-grenoble.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We compute the posterior distributions of the initial population and parameter of binary branching processes in the limit of a large number of generations. We compare this Bayesian procedure with a more naïve one, based on hitting times of some random walks. In both cases, central limit theorems are available, with explicit variances.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2008 

References

Alfers, D. and Dinges, H. (1984). A normal approximation for beta and gamma tail probabilities. Z. Wahrscheinlichkeitsth. 65, 399420.Google Scholar
Jagers, P. and Klebaner, F. (2003). Random variation and concentration effects in PCR. J. Theoret. Biol. 224, 299304.Google Scholar
Kass, R. E. and Wasserman, L. A. (1996). The selection of prior distributions by formal rules. J. Amer. Statist. Assoc. 91, 13431370.Google Scholar
Klebaner, F. C. and Sagitov, S. (2002). The age of a Galton–Watson population with a geometric offspring distribution. J. Appl. Prob. 39, 816828.CrossRefGoogle Scholar
Lalam, N. (2007). Statistical inference for quantitative polymerase chain reaction using a hidden Markov model: a Bayesian approach. Statist. Appl. Genetics Molec. Biol. 6, Article 10.Google Scholar
Lalam, N. and Jacob, C. (2007). Bayesian estimation for quantification by real-time polymerase chain reaction under a branching process model of the DNA molecules amplification process. Math. Popul. Stud. 14, 111129.Google Scholar
Mendoza, M. and Gutiérrez-Peña, E. (2000). Bayesian conjugate analysis of the Galton–Watson process. Test 9, 149171.Google Scholar
Molina, M., González, M. and Mota, M. (1998). Bayesian inference for bisexual Galton–Watson processes. Commun. Statist. Theory Meth. 27, 10551070.Google Scholar
Peccoud, J. and Jacob, C. (1996). Theoretical uncertainty of measurements using quantitative polymerase chain reaction. Biophys. J. 71, 101108.Google Scholar
Piau, D. (2002). Mutation-replication statistics of polymerase chain reactions. J. Computational Biol. 9, 831847.CrossRefGoogle ScholarPubMed
Piau, D. (2004). Immortal branching Markov processes: averaging properties and PCR applications. Ann. Prob. 32, 337364.Google Scholar
Piau, D. (2005). Confidence intervals for non-homogeneous branching processes and PCR reactions. Ann. Prob. 33, 674702.Google Scholar
Prakasa Rao, B. L. S. (1992). Nonparametric estimation for Galton–Watson type process. Statist. Prob. Lett. 13, 287293.Google Scholar
Scott, D. (1987). On posterior asymptotic normality and asymptotic normality of estimators for the Galton–Watson process. J. R. Statist. Soc. Ser. B 49, 209214.Google Scholar
Sun, F. (1995). The polymerase chain reaction and branching processes. J. Computational Biol. 23, 30343040.Google Scholar
Weiss, G. and von Haeseler, A. (1995). Modeling the polymerase chain reaction. J. Computational Biol. 2, 4961.Google Scholar
Weiss, G. and von Haeseler, A. (1997). A coalescent approach to the polymerase chain reaction. Nucleic Acids Res. 25, 30823087.Google Scholar