Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T04:19:27.998Z Has data issue: false hasContentIssue false

Beyond the heuristic approach to Kolmogorov-Smirnov theorems

Published online by Cambridge University Press:  14 July 2016

Abstract

The theory of weak convergence has developed into an extensive and useful, but technical, subject. One of its most important applications is in the study of empirical distribution functions: the explication of the asymptotic behavior of the Kolmogorov goodness-of-fit statistic is one of its greatest successes. In this article a simple method for understanding this aspect of the subject is sketched. The starting point is Doob's heuristic approach to the Kolmogorov-Smirnov theorems, and the rigorous justification of that approach offered by Donsker. The ideas can be carried over to other applications of weak convergence theory.

Type
Part 6 — Stochastic Processes
Copyright
Copyright © 1982 Applied Probability Trust 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Billingsley, P. (1968) Convergence of Probability Measures. Wiley, New York.Google Scholar
Chung, K. L. (1949) An estimate concerning the Kolmogorov limit distribution. Trans. Amer. Math. Soc. 67, 3650.Google Scholar
Doob, J. L. (1949) Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 20, 393403.Google Scholar
Donsker, ?. (1952) Justification and extension of Doob's heuristic approach to the Kolmogorov–Smirnov theorems. Ann. Math. Statist. 23, 277281.Google Scholar
Dudley, R. M. (1978) Central limit theorems for empirical measures. Ann. Prob. 6, 899929 (Correction 7 (1979), 909–911).Google Scholar
Dudley, R. M. (1980a) Donsker classes of functions I. Proc Internat. Symp. Statistics and Related Topics , Carleton University.Google Scholar
Dudley, R. M. (1980b) Vapnik-Cervonenkis Donsker classes of functions. In Les Aspects statistiques et les aspects physiques des processus gaussiens. Colloque CNRS, St-Flour.Google Scholar
Gnedenko, B. V. and Kolmogorov, A. N. (1954) Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading, MA.Google Scholar
Hájek, J. (1965) Extension of the Kolmogorov-Smirnov test to regression alternatives. In Bernoulli, Bayes, Laplace Anniversary Volume , ed. Neyman, J. and Le Cam, L., Springer-Verlag, New York.Google Scholar
Kac, M. (1949) On deviations between theoretical and empirical distributions. Proc. Nat. Acad. Sci. USA 35, 252257.Google Scholar
Kolmogorov, A. N. (1933) Sulla determinazione empirica di una legge di distribuzione. G. Ist. Ital. Att. 4, 8391.Google Scholar
Parthasarathy, K. R. (1967) Probability Measures on Metric Spaces. Academic Press, New York.Google Scholar
Pollard, D. (1981) Limit theorems for empirical processes. Z. Wahrscheinlichkeitsth. 57, 181195.Google Scholar
Pollard, D. (1982) A central limit theorem for empirical processes. J. Austral. Math. Soc..Google Scholar
Wichura, M. J. (1971) A note on the weak convergence of stochastic processes. Ann. Math. Statist. 42, 17691772.Google Scholar