Published online by Cambridge University Press: 14 July 2016
Distributions of some random variables have been characterized by independence of certain functions of these random variables. For example, let X and Y be two independent and identically distributed random variables having the gamma distribution. Laha showed that U = X + Y and V = X | Y are also independent random variables. Lukacs showed that U and V are independently distributed if, and only if, X and Y have the gamma distribution. Ferguson characterized the exponential distribution in terms of the independence of X – Y and min (X, Y). The best-known of these characterizations is that first proved by Kac which states that if random variables X and Y are independent, then X + Y and X – Y are independent if, and only if, X and Y are jointly Gaussian with the same variance. In this paper, Kac's hypotheses have been somewhat modified. In so doing, we obtain a larger class of distributions which we shall call class λ1. A subclass λ0 of λ1 enjoys many nice properties of the Gaussian distribution, in particular, in non-linear filtering.