Published online by Cambridge University Press: 14 July 2016
In this paper we investigate the characterizations of life distributions under four stochastic orderings, < p, < (p), < (p) and < L, by a unified method. Conditions for the stochastic equality of two non-negative random variables under the four stochastic orderings are derived. Many previous results are consequences. As applications, we provide characterizations of life distributions by a single value of their Laplace transforms under orderings < p and < (p) and their moment generating functions under orderings < p and < (p). Under ordering < L, a characterization is given by the expected value of a strictly completely monotone function. The conditions for the stochastic equality of two non-negative vectors under the stochastic orderings < (p), < (p) and < L are presented in terms of the Laplace transforms and moment generating functions of their extremes and sample means. Characterizations of the exponential distribution among L and L life distribution classes are also given.