No CrossRef data available.
Article contents
Contact distribution in a thinned Boolean model with power-law radii
Published online by Cambridge University Press: 15 September 2017
Abstract
We consider a weighted stationary spherical Boolean model in ℝd to which a Matérn-type thinning is applied. Assuming that the radii of the balls in the Boolean model have regularly varying tails, we establish the asymptotic behavior of the tail of the contact distribution of the thinned germ–grain model under four different thinning procedures of the original model.
MSC classification
Secondary:
60G57: Random measures
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 2017
References
[1]
Andersson, J., Häggström, O. and Månsson, M. (2006). The volume fraction of a non-overlapping germ-grain model. Electron. Commun. Prob.
11, 78–88. Google Scholar
[2]
Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambridge University Press. CrossRefGoogle Scholar
[3]
Chiu, S. N., Stoyan, D., Kendall, W. S. and Mecke, J. (2013). Stochastic Geometry and Its Applications, 3rd edn. John Wiley, Chichester. Google Scholar
[4]
Hug, D., Last, G. and Weil, W. (2002). A survey on contact distributions. In Morphology of Condensed Matter (Lecture Notes Physics 600), Springer, Berlin, pp. 317–357. Google Scholar
[5]
Kuronen, M. and Leskelä, L. (2013). Hard-core thinnings of germ-grain models with power-law grain sizes. Adv. Appl. Prob.
45, 595–625. Google Scholar
[6]
Månsson, M. and Rudemo, M. (2002). Random patterns of nonoverlapping convex grains. Adv. Appl. Prob.
34, 718–738. Google Scholar
[7]
Mecke, J. (1967). Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitstheorie.
9, 36–58. Google Scholar
[8]
Nguyen, T. V. and Baccelli, F. (2013). On the generating functionals of a class of random packing point processes. Preprint. Available at http://arxiv.org/abs/1311/4967. Google Scholar
[9]
Resnick, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York. Google Scholar
[10]
Teichmann, J., Ballani, F. and van den Boogaart, K. G. (2013). Generalizations of Matérn's hard-core point processes. Spatial Statist.
3, 33–53. Google Scholar