No CrossRef data available.
Article contents
A Diffusion Approximation for Markov Renewal Processes
Published online by Cambridge University Press: 14 July 2016
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
For a Markov renewal process where the time parameter is discrete, we present a novel method for calculating the asymptotic variance. Our approach is based on the key renewal theorem and is applicable even when the state space of the Markov chain is countably infinite.
MSC classification
Primary:
60G10: Stationary processes
- Type
- Research Article
- Information
- Copyright
- Copyright © Applied Probability Trust 2007
References
Çinlar, E. (1975). Introduction to Stochastic Processes. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
Durrett, R. (1991). Probability: Theory and Examples. Wadsworth and Brooks, Pacific Grove, CA.Google Scholar
Keilson, J. and Wishart, D. M. G. (1964). A central limit theorem for processes defined on a Markov chain. Proc. Camb. Philos. Soc.
60, 547–567.Google Scholar
Limnios, N. and Oprişan, G. (2001). Semi-Markov Processes and Reliability. Birkhäuser, Boston, MA.CrossRefGoogle Scholar
Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, New York.Google Scholar
Pitman, J. W. (1974). Uniform rates of convergence for Markov chain transition probabilities. Z. Wahrscheinlichkeitsth.
29, 193–227.Google Scholar
You have
Access