Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T11:12:24.350Z Has data issue: false hasContentIssue false

From coin tossing to rock-paper-scissors and beyond: a log-exp gap theorem for selecting a leader

Published online by Cambridge University Press:  04 April 2017

Michael Fuchs*
Affiliation:
National Chiao Tung University
Hsien-Kuei Hwang*
Affiliation:
Academia Sinica
Yoshiaki Itoh*
Affiliation:
Institute of Statistical Mathematics
*
* Postal address: Department of Applied Mathematics, National Chiao Tung University, Hsinchu, 300, Taiwan. Email address: mfuchs@math.nctu.edu.tw
** Postal address: Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan.
*** Postal address: Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8562, Japan.

Abstract

A class of games for finding a leader among a group of candidates is studied in detail. This class covers games based on coin tossing and rock-paper-scissors as special cases and its complexity exhibits similar stochastic behaviors: either of logarithmic mean and bounded variance or of exponential mean and exponential variance. Many applications are also discussed.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bajaj, P. N. and Mendieta, G. R. (1993).An open toss problem.Internat. J. Math. Math. Sci. 16,621623.CrossRefGoogle Scholar
[2] Bogoyavlensky, O. I. (1988).Integrable discretizations of the KdV equation.Phys. Lett. A 134,3438.Google Scholar
[3] Bruss, F. T. and O’Cinneide, C. A. (1990).On the maximum and its uniqueness for geometric random samples.J. Appl. Prob. 27,598610.CrossRefGoogle Scholar
[4] Capetanakis, J. (1979).Tree algorithms for packet broadcast channels.IEEE Trans. Inf. Theory 25,505515.Google Scholar
[5] Chen, W.-M. and Hwang, H.-K. (2003).Analysis in distribution of two randomized algorithms for finding the maximum in a broadcast communication model.J. Algorithms 46,140177.CrossRefGoogle Scholar
[6] Devroye, L. (1992).A limit theory for random skip lists.Ann. Appl. Prob. 2,597609.Google Scholar
[7] Eisenberg, B. (2008).On the expectation of the maximum of IID geometric random variables.Statist. Prob. Lett. 78,135143.Google Scholar
[8] Ewens, W. J. and Grant, G. R. (2010).Statistical Methods in Bioinformatics, 2nd edn.Springer,New York.Google Scholar
[9] Fayolle, G., Flajolet, P. and Hofri, M. (1986).On a functional equation arising in the analysis of a protocol for a multi-access broadcast channel.Adv. Appl. Prob. 18,441472.Google Scholar
[10] Fill, J. A., Mahmoud, H. M. and Szpankowski, W. (1996).On the distribution for the duration of a randomized leader election algorithm.Ann. Appl. Prob. 6,12601283.Google Scholar
[11] Flajolet, P. and Sedgewick, R. (2009).Analytic Combinatorics.Cambridge University Press.Google Scholar
[12] Flajolet, P., Gourdon, X. and Dumas, P. (1995).Mellin transforms and asymptotics: harmonic sums.Theoret. Comput. Sci. 144,358.Google Scholar
[13] Flajolet, P., Roux, M. and Vallee, B. (2010).Digital trees and memoryless sources: from arithmetics to analysis, (Proc. Discrete Math. Theor. Comput. Sci.), eds M. Drmota and B. Gittenberger, DMTCS,Nancy, pp.233260.Google Scholar
[14] Frachebourg, L. and Krapivsky, P. L. (1998).Fixation in a cyclic Lotka–Volterra model.J. Phys. A 31,L287L293.Google Scholar
[15] Fuchs, M., Hwang, H.-K. and Zacharovas, V. (2014).An analytic approach to the asymptotic variance of trie statistics and related structures.Theoret. Comput. Sci. 527,136.CrossRefGoogle Scholar
[16] Fuchs, M., Hwang, H.-K., Itoh, Y. and Mahmoud, H. M. (2014).A binomial splitting process in connection with corner parking problems.J. Appl. Prob. 51,971989.CrossRefGoogle Scholar
[17] Gnedin, A. V. (2010).Regeneration in random combinatorial structures.Prob. Surveys 7,105156.CrossRefGoogle Scholar
[18] Hofbauer, J. and Sigmund, K. (1998).The Theory of Evolution and Dynamical Systems.Cambridge University Press.Google Scholar
[19] Hush, D. R. and Wood, C. (1998).Analysis of tree algorithms for RFID arbitration. In Proc. ISIT,IEEE,Cambridge, p.107.Google Scholar
[20] Hwang, H.-K., Fuchs, M. and Zacharovas, V. (2010).Asymptotic variance of random symmetric digital search trees.Discrete Math. Theoret. Comput. Sci. 12,103166.Google Scholar
[21] Itoh, Y. (1971).Boltzmann equation on some algebraic structure concerning struggle for existence.Proc. Japan Acad. 47,854858.Google Scholar
[22] Itoh, Y. (1975).An H-theorem for a system of competing species.Proc. Japan Acad. 51,374379.Google Scholar
[23] Itoh, Y. (1987).Integrals of a Lotka–Volterra system of odd number of variables.Prog. Theoret. Phys. 78,507510.CrossRefGoogle Scholar
[24] Itoh, Y., Maehara, H. and Tokushige, N. (2000).Oriented graphs generated by random points on a circle.J. Appl. Prob. 37,534539.Google Scholar
[25] Janson, S. and Szpankowski, W. (1997).Analysis of an asymmetric leader election algorithm.Electron. J. Comb. 4, 16 pp.Google Scholar
[26] Jacquet, P. and Szpankowski, W. (1998).Analytical depoissonization and its applications.Theoret. Comput. Sci. 201,162.CrossRefGoogle Scholar
[27] Kalpathy, R. and Mahmoud, H. (2014).Perpetuities in fair leader election algorithms.Adv. Appl. Prob. 46,203216.CrossRefGoogle Scholar
[28] Kemp, A. W. (1984).Bulk buying of possibly defective items.J. Operat. Res. Soc. 35,859864.Google Scholar
[29] Knebel, J., Krüer, T., Weber, M. F. and Frey, E. (2013).Coexistence and survival in conservative Lotka–Volterra networks.Phys. Rev. Lett. 110,168106.Google Scholar
[30] Linhart, S. (1995).Some thoughts on the ken game in Japan: from the viewpoint of comparative civilization studies. In Japanese Civilization in the World XI: Amusement, eds T. Umesao, B. Powell and I. Kumakura (Senri Ethnological Studies 40), pp.101124.Google Scholar
[31] Linhart, S. (1998).Cultural History of Ken Games.Kadokawa,Tokyo (in Japanese).Google Scholar
[32] Lundberg, B. (1955).Fatigue failure of airplane structures.J. Aeronaut. Sci. 22,349399.Google Scholar
[33] Maehara, H. and Ueda, S. (2000).On the waiting time in a Janken game.J. Appl. Prob. 37,601605.Google Scholar
[34] Margolin, B. H. and Winokur, H. S. Jr. (1967).Exact moments of the order statistics of the geometric distribution and their relation to inverse sampling and reliability of redundant systems.J. Amer. Statist. Assoc. 62,915925.Google Scholar
[35] Nakano, K. and Olariu, S. (2002).Randomized initialization protocols for radio networks. In Handbook of Wireless Networks and Mobile Computing, ed. I. Stojmenovic.John Wiley,New York.Google Scholar
[36] Neininger, R. and Rüschendorf, L. (2004).A general limit theorem for recursive algorithms and combinatorial structures.Ann. Appl. Prob. 14,378418.Google Scholar
[37] Obayashi, T., Kishino, Y., Sougawa, T. and Yamashita, S. (1998). Encyclopedia of Ethnic Play and Games.Taishuukan-Shoten,Tokyo (in Japanese).Google Scholar
[38] Prodinger, H. (1993).How to select a loser.Discrete Math. 120,149159.Google Scholar
[39] Rego, V. and Mathur, A. P. (1990).Exploiting parallelism across program execution: a unification technique and its analysis.IEEE Trans. Parallel Distrib. Syst. 1,399414.Google Scholar
[40] rego, V. and Szpankowski, W. (1993).Yet another application of a binomial recurrence. Order statistics.Computing 43,401410.Google Scholar
[41] Sinervo, B. and Lively, C. M. (1996).The rock-paper-scissors game and the evolution of alternative male strategies.Nature 380,240243.Google Scholar
[42] Smith, J. M. (1982).Evolution and the Theory of Games.Cambridge University Press.CrossRefGoogle Scholar
[43] Spencer, J. E. (1981).Probability, defectives and mail ordering.J. Operat. Res. Soc. 32,899906.Google Scholar
[44] Suzaki, M. and Osaki, S. (2008).Probabilistic analysis and approximate calculations for ordering Janken.IEICE Trans. Fundam. Electron., Comm. Comput. Sci. 91,393398 (in Japanese).Google Scholar
[45] Suzaki, M. and Osaki, S. (2009).A leader election algorithm by a 4-hand rock-paper-scissors type model: probabilistic analysis and asymptotic behavior.IEICE Trans. Fundam. Electron., Comm. Comput. Sci. 92,571575 (in Japanese). Google Scholar
[46] Suzaki, M. and Osaki, S. (2011).Numerical study for expected time to select a leader for five-hand Janken games.RIMS Kokyuroku 1734,164171 (in Japanese). Google Scholar
[47] Szabó, G. and Fath, G. (2007).Evolutionary games on graphs.Phys. Rep. 446,97216.Google Scholar
[48] Tainaka, K. I. (1988).Lattice model for the Lotka–Volterra system.J. Phys. Soc. Japan 57,25882590.Google Scholar
[49] Tsybakov, B. S. and Mikhailov, V. A. (1978).Free synchronous packet access in a broadcast channel with feedback.Probl. Peredachi Inf. 14,3259.Google Scholar
[50] Von Neumann, J. (1956).Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components. In Automata Studies, eds C. E. Shannon and J. McCarthy.Princeton University Press, pp.4398.Google Scholar
[51] Weiss, G. (1962).On certain redundant systems which operate at discrete times.Technometrics 4,6974.Google Scholar
[52] Wendel, J. G. (1962).A problem in geometric probability.Math. Scand. 11,109111.CrossRefGoogle Scholar