Published online by Cambridge University Press: 14 July 2016
In this paper the theory of genetic algebras introduced by Etherington [3], [5] is developed to cover the case where the population is divided into a number of partially isolated subpopulations, between which a limited amount of migration is permitted. It is known [3], [6], [7], [8], [10], that in the absence of selective factors most genetic segregation systems can be represented by algebras belonging to the class of special train algebras, discussed in detail in [4].