Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T11:20:20.820Z Has data issue: false hasContentIssue false

Limit Theorems for the Inductive Mean on Metric Trees

Published online by Cambridge University Press:  14 July 2016

Bojan Basrak*
Affiliation:
University of Zagreb
*
Postal address: Mathematics Department, University of Zagreb, Bijenička 30, Zagreb, Croatia. Email address: bbasrak@math.hr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For random variables with values on binary metric trees, the definition of the expected value can be generalized to the notion of a barycenter. To estimate the barycenter from tree-valued data, the so-called inductive mean is constructed recursively using the weighted interpolation between the current mean and a new data point. We show the strong consistency of the inductive mean, but also that it, somewhat peculiarly, converges towards the true barycenter with different rates, and asymptotic distributions depending on the small variations of the underlying distribution.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2010 

References

[1] Asmussen, S. (2003). Applied Probability and Queues, 2nd edn. Springer, New York.Google Scholar
[2] Billingsley, P. (1999). Convergence of Probability Measures, 2nd edn. John Wiley, New York.CrossRefGoogle Scholar
[3] Charikar, M. et al. (1998). Approximating a finite metric by a small number of tree metrics. In Proc. 39th Ann. Symp. on Foundations of Computer Science, IEEE Computer Science, Washington, DC, pp. 379388.Google Scholar
[4] Doust, I. and Weston, A. (2008). Enhanced negative type for finite metric trees. J. Funct. Anal. 254, 23362364. (Correction: 255 (2008), 532–533.)Google Scholar
[5] Émery, D. and Mokobodzki, G. (1991). Sur le barycentre d'une probabilité dans une variété. In Séminaire de Probabilités XXV (Lecture Notes Math. 1485), Springer, Berlin, pp. 220233.Google Scholar
[6] Es-Sahib, A. and Heinich, H. (1999). Barycentre canonique pour un espace métrique à courbure négative. In Séminaire de Probabilités XXXIII (Lecture Notes Math. 1709), Springer, Berlin, pp. 355370.Google Scholar
[7] Kendall, W. S. (1990). Probability, convexity, and harmonic maps with small images. I. Uniqueness and fine existence. Proc. London Math. Soc. 61, 371406.CrossRefGoogle Scholar
[8] Liggett, T. M. and Schinazi, R. B. (2009). A stochastic model for phylogenetic trees. J. Appl. Prob. 46, 601607.CrossRefGoogle Scholar
[9] Liu, L. et al. (2009). Coalescent methods for estimating phylogenetic trees. Molec. Phylogenet. Evol. 53, 320328.CrossRefGoogle ScholarPubMed
[10] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London.CrossRefGoogle Scholar
[11] Picard, J. (1994). Barycentres et martingales sur une variété. Ann. Inst. H. Poincaré Prob. Statist. 30, 647702.Google Scholar
[12] Rzhetsky, A., Kumar, S. and Nei, M. (1995). Four-cluster analysis: a simple method to test phylogenetic hypotheses. Molec. Biol. Evol. 12, 163167.CrossRefGoogle ScholarPubMed
[13] Semple, C. and Steel, M. (2003). Phylogenetics. Oxford University Press.CrossRefGoogle Scholar
[14] Solomyak, M. (2004). On the spectrum of the Laplacian on regular metric trees. Waves Random Media 14, S155S171.Google Scholar
[15] Steel, M., Goldstein, L. and Waterman, M. S. (1996). A central limit theorem for the parsimony length of trees. Adv. Appl. Prob. 28, 10511071.CrossRefGoogle Scholar
[16] Strimmer, K. and von Haeseler, A. (1997). Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc. Nat. Acad. Sci. USA. 94, 68156819.CrossRefGoogle ScholarPubMed
[17] Sturm, K.-T. (2003). {Probability measures on metric spaces of nonpositive curvature.} In Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Contemp. Math. 338), American Mathematical Society, Providence, RI, pp. 357390.Google Scholar
[18] Waterman, M. S. (1995). Introduction to Computational Biology: Maps, Sequences and Genomes. Chapman and Hall, London.Google Scholar