Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-30T20:44:19.167Z Has data issue: false hasContentIssue false

Mesoadditive processes and the specific conductivity of lattices

Published online by Cambridge University Press:  14 July 2016

Abstract

The hypercubic lattice with bonds of random electrical resistance affords a model for the specific conductivity of microscopically irregular material. The resulting stochastic process lies between a subadditive and a superadditive process: mesoadditive processes of this type provide several unsolved problems for pure mathematicians.

Type
Part 8 - Random Walks, Graphs and Networks
Copyright
Copyright © Applied Probability Trust 1988 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Akcoglu, M. A. and Krengel, U. (1984) Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323, 5367.Google Scholar
[2] Broadbent, S. R. and Hammersley, J. M. (1957) Percolation processes I. Crystals and mazes. Proc. Camb. Phil. Soc. 53, 629641.Google Scholar
[3] Burridge, R., Childress, S. and Papanicolaou, G., (Eds) (1982) Macroscopic Properties of Disordered Media., Lecture Notes in Physics 154, Springer-Verlag, Berlin.Google Scholar
[4] Chayes, J. T. and Chayes, L. (1986) Bulk transport properties and exponent inequalities for random resistor and flow networks. Commun. Math. Phys. 105, 133152.CrossRefGoogle Scholar
[5] Deutscher, G., Zallen, R. and Adler, J., (eds) (1983) Percolation structures and processes. Ann. Israel Phys. Soc. 5.Google Scholar
[6] Frisch, H. L. and Hammersley, J. M. (1963) Percolation processes and related topics. J. Soc. Indust. Appl. Math. 11, 894918.Google Scholar
[7] Golden, K. and Papanicolaou, G. (1983) Bounds for effective parameters of heterogeneous media by analytic continuation. Commun. Math. Phys. 90, 473491.Google Scholar
[8] Grimmett, G. and Kesten, H. (1984) First-passage percolation, network flows and electrical resistances. Z. Wahrscheinlichkeitsth. 66, 335366.Google Scholar
[9] Hammersley, J. M. (1959) Bornes supérieures de la probabilité critique dans un processus de filtration. Coloq. Intern. CNRS 87, 1737.Google Scholar
[10] Hammersley, J. M. (1970) A few seedlings of research. Proc. 6th Berkeley Symp. Math. Statist. Prob. 1, 345394.Google Scholar
[11] Hammersley, J. M. (1974) Postulates for subadditive processes. Ann. Prob. 2, 652680.CrossRefGoogle Scholar
[12] Hammersley, J. M. and Morton, K. W. (1954) Poor man's Monte Carlo. J.R. Statist. Soc. B 16, 2338.Google Scholar
[13] Hammersley, J. M. and Welsh, D. J. A. (1962) Further results on the rate of convergence to the connective constant of the hypercubical lattice. Quart. J. Math. Oxford (2) 13, 108110.Google Scholar
[14] Hammersley, J. M. and Welsh, D. J. A. (1965) First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. Bernoulli–Bayes–Laplace Anniversary Volume, 65110, Springer-Verlag, New York.Google Scholar
[15] Hammersley, J. M. and Whittington, S. G. (1985) Self-avoiding walks in wedges. J. Phys. A. Math. Gen. 18, 101111.Google Scholar
[16] Hammersley, J. M., Torrie, G. M. and Whittington, S. G. (1982) Self-avoiding walks interacting with a surface. J. Phys. A. Math. Gen. 15, 539571.Google Scholar
[17] Hille, E. (1948) Functional Analysis and Semigroups. Amer. Math. Soc. Colloq. Publ. 31.Google Scholar
[18] Hughes, B. D. and Ninham, B. W. (1983) The Mathematics and Physics of Disordered Media., Lecture Notes in Mathematics 1035, Springer-Verlag, Berlin.Google Scholar
[19] Jäger, W., Rost, H. and Tautu, P., (Eds) (1982) Biological Growth and Spread., Lecture Notes in Biomathematics 154, Springer-Verlag, Berlin.Google Scholar
[20] Kesten, H. (1963) On the number of self-avoiding walks. J. Math. Phys. 4, 960969; 5 (1964), 1128–1137.CrossRefGoogle Scholar
[21] Kesten, H. (1982) Percolation Theory for Mathematicians. Birkhauser, Boston.CrossRefGoogle Scholar
[22] Kesten, H. (1986) Aspects of first-passage percolation. Ecole d'Eté de Probabilités de Saint-Flour XIV, ed. Hennequin, P., Lecture Notes in Mathematics 1180, Springer-Verlag, Berlin, 125264.Google Scholar
[23] Kesten, H. (1987) Percolation theory and first-passage percolation. Ann. Prob. 15, 12311271.CrossRefGoogle Scholar
[24] Kingman, J. F. C. (1973) The ergodic theory of subadditive stochastic processes. J.R. Statist. Soc. B 30, 499510.Google Scholar
[25] Kingman, J. F. C. (1973) Subadditive ergodic theory. Ann. Prob. 1, 883909.Google Scholar
[26] Kingman, J F. C. (1973) Subadditive processes. Ecole d'Eté de Probabilités de Saint-flour, Lecture Notes in Mathematics 539, Springer-Verlag, Berlin, 168223.Google Scholar
[27] Kirkpatrick, S. (1973) Percolation and conduction. Rev. Mod. Phys. 45, 574588.Google Scholar
[28] Krengel, U. (1985) Ergodic Theorems. de Gruyter, Berlin.CrossRefGoogle Scholar
[29] Künneman, R. (1983) The diffusion limit for reversible jump processes on Zd with ergodic random bond conductivities. Commun. Math. Phys. 90, 2768.CrossRefGoogle Scholar
[30] Logan, B. F. and Shepp, L. A. (1975) A variational problem for Young tableaux. Adv. Math. 26, 206222.Google Scholar
[31] Nguyen, X. X. (1980) Ergodic theorems for multidimensional subadditive processes. Adv. Appl. Prob. 12, 572573.Google Scholar
[32] Pólya, G. and Szëgo, G. (1925) Aufgaben und Lehrsätze aus der Analysis. Springer-Verlag, Berlin.Google Scholar
[33] Ruelle, D. (1969) Statistical Mechanics: Rigorous Results. Math. Phys. Monograph Series, Benjamin, Mass. Google Scholar
[34] Shante, V. K. S. and Kirkpatrick, S. (1971) An introduction to percolation theory. Adv. Phys. 20, 325357.Google Scholar
[35] Smythe, R. T. (1973) Strong laws of large numbers for r-dimensional arrays of strong variables. Ann. Prob. 1, 164170.CrossRefGoogle Scholar
[36] Smythe, R. T. (1976) Multiparameter subadditive processes. Ann. Prob. 4, 772782.Google Scholar
[37] Smythe, R. T. and Wierman, J. C. (1978) First-passage Percolation on the Square Lattice., Lecture Notes in Mathematics 671, Springer-Verlag, Berlin.Google Scholar
[38] Straley, J. P. (1977) Critical exponents for the conductivity of random resistor lattices. Phys. Rev. B 15, 57335737.Google Scholar
[39] Vershik, A. M. and Kerov, S. V. (1977) Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tables. Soviet Math. Dokl. 18, 527531.Google Scholar
[40] Ziman, J. (1979) Models of Disorder. Cambridge University Press.Google Scholar