Article contents
A model for the spreading of fake news
Published online by Cambridge University Press: 04 May 2020
Abstract
We introduce a model for the spreading of fake news in a community of size n. There are $j_n = \alpha n - g_n$ active gullible persons who are willing to believe and spread the fake news, the rest do not react to it. We address the question ‘How long does it take for $r = \rho n - h_n$ persons to become spreaders?’ (The perturbation functions $g_n$ and $h_n$ are o(n), and $0\le \rho \le \alpha\le 1$ .) The setup has a straightforward representation as a convolution of geometric random variables with quadratic probabilities. However, asymptotic distributions require delicate analysis that gives a somewhat surprising outcome. Normalized appropriately, the waiting time has three main phases: (a) away from the depletion of active gullible persons, when $0< \rho < \alpha$ , the normalized variable converges in distribution to a Gumbel random variable; (b) near depletion, when $0< \rho = \alpha$ , with $h_n - g_n \to \infty$ , the normalized variable also converges in distribution to a Gumbel random variable, but the centering function gains weight with increasing perturbations; (c) at almost complete depletion, when $r = j -c$ , for integer $c\ge 0$ , the normalized variable converges in distribution to a convolution of two independent generalized Gumbel random variables. The influence of various perturbation functions endows the three main phases with an infinite number of phase transitions at the seam lines.
MSC classification
- Type
- Research Papers
- Information
- Copyright
- © Applied Probability Trust 2020
References
- 11
- Cited by