No CrossRef data available.
Article contents
Moments based approximation for the stationary distribution of a random walk in Z+ with an application to the M/GI/1/n queueing system
Published online by Cambridge University Press: 14 July 2016
Abstract
In this paper we consider an irreducible random walk in Z+ defined by X(m+1) = max(0, X(m) + A(m+1)) with E{A} < 0 and for an s ≥ 0 where a+ = max(0,a). Let π be the stationary distribution of X. We show that one can find probability distributions πn supported by {0,n} such that ||πn - π||1 ≤ Cn-s, where the constant C is computable in terms of the moments of A, and also that ||πn - π||1 = o(n-s). Moreover, this upper bound reveals exact for s ≥ 1, in the sense that, for any positive ε, we can find a random walk fulfilling the above assumptions and for which the relation ||πn - π||1 = o(n-s-ε) does not hold. This result is used to derive the exact convergence rate of the time stationary distribution of an M/GI/1/n queueing system to the time stationary distribution of the corresponding M/GI/1 queueing system when n tends to infinity.
MSC classification
- Type
- Short Communications
- Information
- Copyright
- Copyright © 2000 by The Applied Probability Trust