Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T07:44:26.219Z Has data issue: false hasContentIssue false

Moments for multidimensional Mandelbrot cascades

Published online by Cambridge University Press:  24 March 2016

Abstract

We consider the distributional equation Z =Dk=1NAkZ(k), where N is a random variable taking value in N0 = {0, 1, . . .}, A1, A2, . . . are p x p nonnegative random matrices, and Z, Z(1), Z(2), . . ., are independent and identically distributed random vectors in R+p with R+ = [0, ∞), which are independent of (N, A1, A2, . . .). Let {Yn} be the multidimensional Mandelbrot martingale defined as sums of products of random matrices indexed by nodes of a Galton–Watson tree plus an appropriate vector. Its limit Y is a solution of the equation above. For α > 1, we show a sufficient condition for E|Y|α ∈ (0, ∞). Then for a nondegenerate solution Z of the distributional equation above, we show the decay rates of Ee-tZ as |t| → ∞ and those of the tail probability P(yZx) as x → 0 for given y = (y1, . . ., yp) ∈ R+p, and the existence of the harmonic moments of yZ. As an application, these results concerning the moments (of positive and negative orders) of Y are applied to a special multitype branching random walk. Moreover, for the case where all the vectors and matrices of the equation above are complex, a sufficient condition for the Lα convergence and the αth-moment of the Mandelbrot martingale {Yn} are also established.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alsmeyer, G. and Kuhlbusch, D. (2010). Double martingale structure and existence of ϕ-moments for weighted branching processes. Münster J. Math. 3, 163211. Google Scholar
[2]Alsmeyer, G., Iksanov, A., Polotskiy, S. and Rösler, U. (2009). Exponential rate of L p-convergence of instrinsic martingales in supercritical branching random walks. Theory Stoch. Process. 15, 118. Google Scholar
[3]Barral, J. (1999). Moments, continuité, et analyse multifractale des martingales de Mandelbrot. Prob. Theory Relat. Fields 113, 535569. Google Scholar
[4]Barral, J. (2001). Generalized vector multiplicative cascades. Adv. Appl. Prob. 33, 874895. CrossRefGoogle Scholar
[5]Barral, J. and Jin, X. (2010). Multifractal analysis of complex random cascades. Commun. Math. Phys. 297, 129168. CrossRefGoogle Scholar
[6]Barral, J., Jin, X. and Mandelbrot, B. (2010). Convergence of complex multiplicative cascades. Ann. Appl. Prob. 20, 12191252. CrossRefGoogle Scholar
[7]Biggins, J. D. (1977). Martingale convergence in the branching random walk. J. Appl. Prob. 14, 2537. Google Scholar
[8]Biggins, J. D. (1979). Growth rates in the branching random walk. Z. Wahrscheinlichkeitsth. 48, 1734. Google Scholar
[9]Biggins, J. D. (1992). Uniform convergence of martingales in the branching random walk. Ann. Prob. 20, 137151. Google Scholar
[10]Biggins, J. D. (2012). Spreading speeds in reducible multitype branching random walk. Ann. Appl. Prob. 22, 17781821. Google Scholar
[11]Biggins, J. D. and Kyprianou, A. E. (1997). Seneta–Heyde norming in the branching random walk. Ann. Prob. 25, 337360. CrossRefGoogle Scholar
[12]Biggins, J. D. and Rahimzadeh Sani, A. (2005). Convergence results on multitype, multivariate branching random walks. Adv. Appl. Prob. 37, 681705. Google Scholar
[13]Bingham, N. H. (1988). On the limit of a supercritical branching process. In A Celebration of Applied Probability (J. Appl. Prob. Spec. Vol. 25A), Applied Probability Trust, Sheffield, pp. 215228. Google Scholar
[14]Bingham, N. H. and Doney, R. A. (1974). Asymptotic properties of supercritical branching processes. I. The Galton–Watson process. Adv. Appl. Prob. 6, 711731. Google Scholar
[15]Bingham, N. H. and Doney, R. A. (1975). Asymptotic properties of supercritical branching processes. II. Crump–Mode and Jirina processes. Adv. Appl. Prob. 7, 6682. CrossRefGoogle Scholar
[16]Buraczewski, D., Damek, E., Guivarc'h, Y. and Mentemeier, S. (2014). On multidimensional Mandelbrot cascades. J. Difference Equ. Appl. 20, 15231567. CrossRefGoogle Scholar
[17]Chow, Y. S. and Teicher, H. (1988). Probability Theory: Independence, Interchangeability, Martingales, 2nd edn. Springer, New York. Google Scholar
[18]Collet, P. and Koukiou, F. (1992). Large deviations for multiplicative chaos. Commun. Math. Phys. 147, 329342. Google Scholar
[19]Durrett, R. and Liggett, T. M. (1983). Fixed points of the smoothing transformation. Z. Wahrscheinlichkeitsth. 64, 275301. Google Scholar
[20]Guivarc'h, Y. (1990). Sur une extension de la notion de loi semi-stable. Ann. Inst. H. Poincaré Prob. Statist. 26, 261285. Google Scholar
[21]Hambly, B. (1992). On the limiting distribution of a supercritical branching process in a random environment. J. Appl. Prob. 29, 499518. Google Scholar
[22]Harris, T. E. (1948). Branching processes. Ann. Math. Statist. 19, 474494. Google Scholar
[23]Holley, R. and Waymire, E. C. (1992). Multifractal dimensions and scaling exponents for strongly bounded cascades. Ann. Appl. Prob. 2, 819845. CrossRefGoogle Scholar
[24]Huang, C. (2010). Théorèms limites et vitesses de convergence pour certains processus de branchement et des marches aléatoires branchantes. Doctoral thesis. Université de Bretagne Sud. Google Scholar
[25]Huang, C. and Liu, Q. (2012). Moments, moderate and large deviations for a branching process in a random environment. Stoch. Process. Appl. 122, 522545. Google Scholar
[26]Huang, C. and Liu, Q. (2014). Convergence in L p and its exponential rate for a branching process in a random environment. Electron. J. Prob. 19, 22 pp. CrossRefGoogle Scholar
[27]Kahane, J.-P. and Peyrière, J. (1976). Sur certaines martingales de Benoit Mandelbrot. Adv. Math. 22, 131145. Google Scholar
[28]Kingman, J. F. C. (1961). A convexity property of positive matrices. Quart. J. Math. Oxford (2) 12, 283284. Google Scholar
[29]Kyprianou, A. E. and Rahimzadeh Sani, A. (2001). Martingale convergence and the functional equation in the multi-type branching random walk. Bernoulli 7, 593604. Google Scholar
[30]Liu, Q. (1996). The exact Hausdorff dimension of a branching set. Prob. Theory Relat. Fields 104, 515538. CrossRefGoogle Scholar
[31]Liu, Q. (1999). Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks. Stoch. Process. Appl. 82, 6187. CrossRefGoogle Scholar
[32]Liu, Q. (2000). On generalized multiplicative cascades. Stoch. Process. Appl. 86, 263286. Google Scholar
[33]Liu, Q. (2001). Asymptotic properties and absolute continuity of laws stable by random weighted mean. Stoch. Process. Appl. 95, 83107. Google Scholar
[34]Mandelbrot, B. (1974). Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris A 278, 289292. Google Scholar
[35]Mandelbrot, B. (1974). Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire: quelques extensions. C. R. Acad. Sci. Paris A 278, 355358. Google Scholar
[36]Mauldin, R. D. and Williams, S. C. (1986). Random recursive constructions: asymptotic geometric and topological properties. Trans. Amer. Math. Soc. 295, 325346. Google Scholar
[37]Molchan, G. M. (1996). Scaling exponents and multifractal dimensions for independent random cascades. Commun. Math. Phys. 179, 681702. Google Scholar
[38]Ney, P. E. and Vidyashankar, A. N. (2003). Harmonic moments and large deviation rates for supercritical branching process. Ann. Appl. Prob. 13, 475489. CrossRefGoogle Scholar
[39]Rösler, U. (1992). A fixed point theorem for distributions. Stoch. Process Appl. 42, 195214. Google Scholar