Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T16:18:08.915Z Has data issue: false hasContentIssue false

Multiperiod conditional distribution functions for conditionally normal GARCH(1, 1) models

Published online by Cambridge University Press:  14 July 2016

Raymond Brummelhuis*
Affiliation:
Birkbeck College
Dominique Guégan*
Affiliation:
École Normale Supérieure de Cachan
*
Postal address: School of Economics, Mathematics and Statistics, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK. Email address: r.brummelhuis@statistics.bbk.ac.uk
∗∗Postal address: Département d'Économie et de Gestion, ENS Cachan, 61 av. du President Wilson, 94235 Cachan Cedex, France. Email address: guegan@ecogest.ens-cachan.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the asymptotic tail behavior of the conditional probability distributions of rt+k and rt+1+⋯+rt+k when (rt)t∈ℕ is a GARCH(1, 1) process. As an application, we examine the relation between the extreme lower quantiles of these random variables.

Type
Research Papers
Copyright
© Applied Probability Trust 2005 

References

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of risk. Math. Finance 9, 203228.CrossRefGoogle Scholar
Bingham, N. H., Goldie, G. M. and Teugels, J. L. (1987). Regular Variation. Cambridge University Press.CrossRefGoogle Scholar
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31, 307325.CrossRefGoogle Scholar
Bollerslev, T., Engle, R. F. and Nelson, D. B. (1994). ARCH models. In Handbook of Econometrics (Handbook Econom. 2), Vol. 4, eds R. F. Engle and D. McFadden, North-Holland, Amsterdam, pp. 29593038.Google Scholar
De Haan, L., Resnick, S. I., Rootzén, H. and de Vries, C. G. (1989). Extremal behavior of solutions to a stochastic difference equation with applications to ARCH processes. Stoch. Process. Appl. 32, 213224.CrossRefGoogle Scholar
Diebolt, J. and Guégan, D. (1991). Le modèle β-ARCH. C. R. Acad. Sci. Paris 312, 625630.Google Scholar
Diebolt, J. and Guégan, D. (1993). Tail behavior of the stationary density of general nonlinear autoregressive process of order 1. J. Appl. Prob. 30, 315329.CrossRefGoogle Scholar
Dowd, K. (1998). Beyond Value at Risk. John Wiley, Chichester.Google Scholar
Drost, F. C. and Nijman, T. E. (1993). Temporal aggregation of GARCH processes. Econometrica 61, 909927.CrossRefGoogle Scholar
Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance. Springer, Berlin.CrossRefGoogle Scholar
Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 9071007.CrossRefGoogle Scholar
Frey, R. and McNeil, A. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. J. Empirical Finance 7, 271300.Google Scholar
Guégan, D. (1994). Séries Chronologiques Non Linéaires à Temps Discrèt. Economica, Coll. Statistique Mathématique et Probabilité, Paris.Google Scholar
Guégan, D. (2000). A new model: the k-factor GIGARCH process. J. Signal Process. 4, 265271.Google Scholar
Jorion, P. (1997). Value at Risk: The New Benchmark for Controlling Market Risk. McGraw-Hill, New York.Google Scholar
Kim, J. and Mina, J. (1996). RiskMetrics Technical Document. Available at: http://www.riskmetrics.com/techdoc.html.Google Scholar
Mikosch, T. and Stâricâ, C. (2000). Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process. Ann. Statist. 28, 14271451.CrossRefGoogle Scholar