Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T23:22:15.365Z Has data issue: false hasContentIssue false

A note on first-passage time and some related problems

Published online by Cambridge University Press:  14 July 2016

A. G. Nobile*
Affiliation:
University of Salerno
L. M. Ricciardi*
Affiliation:
University of Naples
L. Sacerdote*
Affiliation:
University of Salerno
*
Postal address: Dipartimento di Informatica e Applicazioni, University of Salerno, Salerno, Italy.
∗∗Postal address: Dipartimento di Matematica e Applicazioni, University of Naples, Via Mezzocannone 8, 80134 Napoli, Italy.
Postal address: Dipartimento di Informatica e Applicazioni, University of Salerno, Salerno, Italy.

Abstract

Expansions for the first-passage-time p.d.f. through a constant boundary and for its Laplace transform are derived in terms of probability currents for a temporally homogeneous diffusion process. Ultimate absorption and recurrence problems are also considered. The moments of the first-passage time are finally explicitly obtained.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1985 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Work performed under CNR-JSPS Scientific Cooperation Programme, Contracts No. 83.00032.01 and No. 84.00227.01, and under MPI financial support.

References

[1] Abrahams, J. (1983) A survey of recent progress on level crossing problems for random processes. Preprint.Google Scholar
[2] Blake, I. F. and Lindsey, W. C. (1973) Level crossing problems for random processes. IEEE Trans. Information Theory IT-19, 295315.Google Scholar
[3] Darling, D. A. and Siegert, A. J. F. (1953) The first passage problem for a continuous Markov process. Ann. Math. Statist. 24, 624639.Google Scholar
[4] Durbin, J. (1971) Boundary crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov–Smirnov test. J. Appl. Prob. 8, 431453.Google Scholar
[5] Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1953) Higher Transcendental Functions, Vol. II, McGraw Hill, New York.Google Scholar
[6] Favella, L., Reineri, M. T., Ricciardi, L. M. and Sacerdote, L. (1982) First passage time problems and some related computational methods. Cybernetics and Systems 13, 95128.CrossRefGoogle Scholar
[7] Fortet, R. (1943) Les fonctions aléatoires du type de Markoff associées à certaines équations linéaires aux dérivées partielles du type parabolique. J. Math. Pures Appl. 22, 177243.Google Scholar
[8] Ricciardi, L. M. and Sato, S. (1983) A note on first passage time problems for Gaussian processes and varying boundaries. IEEE Trans. Information Theory IT-29, 454457.Google Scholar
[9] Ricciardi, L. M., Sacerdote, L. and Sato, S. (1984) On an integral equation for first-passage-time probability densities. J. Appl. Prob. 21, 302314.Google Scholar
[10] Siegert, A. J. F. (1951) On the first passage time probability problem. Phys. Rev. 81, 617623.CrossRefGoogle Scholar
[11] Stratonovich, R. L. (1963) Topics in the Theory of Random Noise, Vol. I. Gordon and Breach, New York.Google Scholar