No CrossRef data available.
Published online by Cambridge University Press: 14 July 2016
An important problem, arising in connection with the estimation of mathematical expectation of a homogeneous random field X(x1, ···, xn) in Rn by means of the arithmetic mean of observed values, is to determine the number of observations for which the variance of the estimate attains its minimum. Vilenkin [2] has shown, that in the case of a stationary random process X(x) such a finite number exists, provided that the covariance function satisfies certain conditions.