Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T04:03:23.728Z Has data issue: false hasContentIssue false

On ε-Optimality of the Pursuit Learning Algorithm

Published online by Cambridge University Press:  04 February 2016

Ryan Martin*
Affiliation:
University of Illinois at Chicago
Omkar Tilak*
Affiliation:
Indiana University - Purdue University Indianapolis
*
Postal address: Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 S. Morgan St., 322 Science and Engineering Offices, Chicago, Illinois 60607, USA. Email address: rgmartin@math.uic.edu
∗∗ Postal address: Department of Computer and Information Sciences, Indiana University - Purdue University Indianapolis, 723 W. Michigan St., SL 280, Indianapolis, Indiana 46202, USA. Email address: otilak@cs.iupui.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Estimator algorithms in learning automata are useful tools for adaptive, real-time optimization in computer science and engineering applications. In this paper we investigate theoretical convergence properties for a special case of estimator algorithms - the pursuit learning algorithm. We identify and fill a gap in existing proofs of probabilistic convergence for pursuit learning. It is tradition to take the pursuit learning tuning parameter to be fixed in practical applications, but our proof sheds light on the importance of a vanishing sequence of tuning parameters in a theoretical convergence analysis.

Type
Research Article
Copyright
© Applied Probability Trust 

References

Agache, M. and Oommen, B. J. (2002). Generalized pursuit learning schemes: new families of continuous and discretized learning automata. IEEE Trans. Systems Man Cybernet. 32, 738749.CrossRefGoogle ScholarPubMed
Atlasis, A. F., Loukas, A. N. H. and Vasilakos, A. V. (2000). The use of learning algorithms in ATM networks call admission control problem: a methodology. Comput. Networks 34, 341353.CrossRefGoogle Scholar
Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58, 1330.CrossRefGoogle Scholar
Kashki, M., Abido, M. A. and Abdel-Magid, Y. L. (2010). Pole placement approach for robust optimum design of PSS and TCSC-based stabilizers using reinforcement learning automata. Electrical Eng. 91, 383394.CrossRefGoogle Scholar
Klenke, A. and Mattner, L. (2010). Stochastic ordering of classical discrete distributions. Adv. Appl. Prob. 42, 392410.CrossRefGoogle Scholar
Kushner, H. J. and Yin, G. G. (2003). Stochastic Approximation and Recursive Algorithms and Applications, 2nd edn. Springer, New York.Google Scholar
Lanctôt, J. K. and Oommen, B. J. (1992). Discretized estimator learning automata. IEEE Trans. Systems Man Cybernet. 22, 14731483.CrossRefGoogle Scholar
Lixia, L., Gang, H., Ming, X. and Yuxing, P. (2010). Learning automata based spectrum allocation in cognitive networks. In IEEE Internat. Conf. Wireless Communications, Networking, and Information Security, pp. 503508.Google Scholar
Misra, S., Tiwari, V. and Obaidat, M. S. (2009). Lacas: learning automata-based congestion avoidance scheme for healthcare wireless sensor networks. IEEE J. Selected Areas Commun. 27, 466479.CrossRefGoogle Scholar
Narendra, K. S. and Thathachar, M. A. L. (1989). Learning Automata: An Introduction. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
Oommen, B. J. and Hashem, M. K. (2010). Modeling a student's behavior in a tutorial-like system using learning automata. IEEE Trans. Systems Man Cybernet. B 40, 481492.CrossRefGoogle Scholar
Oommen, B. J. and Lanctôt, J. K. (1990). Discretized pursuit learning automata. IEEE Trans. Systems Man Cybernet. 20, 931938.CrossRefGoogle Scholar
Papadimitriou, G. I., Sklira, M. and Pomportsis, A. S. (2004). A new class of ∊-optimal learning automata. IEEE Trans. Systems Man Cybernet. B 34, 246254.CrossRefGoogle ScholarPubMed
Proschan, F. and Sethuraman, J. (1976). Stochastic comparisons of order statistics from heterogeneous populations, with applications in reliability. J. Multivariate Anal. 6, 608616.CrossRefGoogle Scholar
Rajaraman, K. and Sastry, P. S. (1996). Finite time analysis of the pursuit algorithm for learning automata. IEEE Trans. Systems Man Cybernet. B 26, 590598.CrossRefGoogle ScholarPubMed
Robbins, H. and Monro, S. (1951). A stochastic approximation method. Ann. Math. Statist. 22, 400407.CrossRefGoogle Scholar
Sastry, P. S. (1985). Systems of learning automata: estimator algorithms and applications. , Indian Institute of Science.Google Scholar
Thathachar, M. A. L. and Sastry, P. S. (1985). A new approach to the design of reinforcement schemes for learning automata. IEEE Trans. Systems Man Cybernet. 15, 168175.CrossRefGoogle Scholar
Thathachar, M. A. L. and Sastry, P. S. (1987). Learning optimal discriminant functions through a cooperative game of automata. IEEE Trans. Systems Man Cybernet. 17, 7385.CrossRefGoogle Scholar
Tilak, O., Martin, R. and Mukhopadhyay, S. (2011). Decentralized, indirect methods for learning automata games. IEEE Trans. Systems Man Cybernet. B. 41, 12131223.CrossRefGoogle ScholarPubMed
Torkestania, J. A. and Meybodi, M. R. (2010). Clustering the wireless ad hoc networks: a distributed learning automata approach. J. Parallel Distributed Computing 70, 394405.CrossRefGoogle Scholar
Torkestania, J. A. and Meybodi, M. R. (2010). An intelligent backbone formation algorithm for wireless ad hoc networks based on distributed learning automata. Comput. Networks 54, 826843.CrossRefGoogle Scholar
Tuan, T. A., Tong, L. C. and Premkumar, A. B. (2010). An adaptive learning automata algorithm for channel selection in cognitive radio network. In 2010 Internat. Conf. Communications and Mobile Computing, Vol. 2, IEEE Computer Society, Washington, DC, pp. 159163.Google Scholar
Zhong, W., Xu, Y. and Tao, M. (2010). Precoding strategy selection for cognitive MIMO multiple access channels using learning automata. In 2010 IEEE Internat. Conf. Communications, pp. 2327.CrossRefGoogle Scholar