Article contents
On random mappings with a single attracting centre
Published online by Cambridge University Press: 14 July 2016
Abstract
We consider the random vector T = (T(0), ···, T(n)) with independent identically distributed coordinates such that Pr{T(i) = j} = Pj, j = 0, 1, ···, n, Σ . A realization of T can be viewed as a random graph GT with vertices {0, ···, n} and arcs {(0, T(0)), ···, (n, T(n))}. For each T we partition the vertex-set of GT into three disjoint groups and study the joint probability distribution of their cardinalities. Assuming that we observe the asymptotics of this distribution, as n → ∞, for all possible values of P0. It turns out that in some cases these cardinalities are asymptotically independent and identically distributed.
Keywords
- Type
- Short Communications
- Information
- Copyright
- Copyright © Applied Probability Trust 1987
References
- 5
- Cited by